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nutzung der angegebenen Quellen und Hilfsmittel verfasst zu haben. Ich erkläre
weiterhin, dass die vorliegende Arbeit noch nicht im Rahmen eines anderen
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Abstract

Only within the last decade has the potential of deep neural networks begun
to surface. Improved computational resources, data storage, and breakthroughs
in the theoretical framework driving machine-learning, particularly deep learning
has allowed researchers across disciplines explore the usefulness of these algorithms.
The geophysics community is in the early stages of exploring the applicability of
deep neural networks in seismology. We participate in this endeavor by applying
two different deep neural networks on two different challenges facing seismology
today: improving the signal-to-noise ratio of seismic data and S-phase picking. In
both cases we were able to develop and implement the entire machine learning
workflow. This includes downloading, pre-processing, converting the data into a
workable format, training, and validating the model via a test set. Both deep neural
networks demonstrate promising results thus far; with recovered SNR in the case of
our denoiser and accurate phase picks for our S-phase picker. The current models
are baselines which will later be improved as we continue to implement various
machine learning procedures and techniques. The pipeline for transfer learning has
been developed and tried as well for both deep neural networks.
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Thesis Structure

This thesis covers two independent machine learning projects. As such, it made sense
to allocate separate and self-contained chapters for each project. Thus allowing the
interested reader to learn about either project without having to refer to the other.

With that stated, the Thesis is structured as follows: Chapter I is devoted to
the motivation of this thesis and current state of Machine Learning in the field
of Seismology. Chapter II provides some theoretical background on topics critical
to Machine Learning and Deep Learning. Chapter III goes over basic concepts of
Seismology. This chapter is mostly geared to provide the reader with background
knowledge of rotational measurements, as it is not a topic still not yet widely dis-
cussed in the Seismological community.

Chapters IV and Chapter V are devoted to the thesis projects. To mimic the flow
of a scientific paper we refrained from restating (in depth) definitions and theory
since said topics are covered in Chapter II. We cite which sections to refer to in
order to obtain the technical details as they come along in Chapters IV and V.

Note: Chapter II provides sufficient information to understand what was done for
this thesis. However, by no means does this cover enough theory to practice Machine
Learning. The interested reader should understand the statistical framework that
allows Machine Learning to be possible. This section was omitted for this Thesis in
order to keep the thesis as short and ‘to the point’ as possible.
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Chapter 1

Introduction

Applying machine learning algorithms (ML) in seismology is gaining rapid momen-
tum. With readily available computing resources and troves of seismic data now out
of human processing reach, seismologists are turning to artificial neural networks to
gain new insights.

As geophysicists, we have the theory, intuition, and logic to analyze data, but
Machine Learning can do something that we as humans cannot. Machine Learning
can work beyond our geophysical intuition and facilitate the discovery of unconsid-
ered patterns.

In a nutshell, machine learning is a set of techniques that use computational
methods to learn information directly from data without relying on a predetermined
equation. ML algorithms learn from data using probabilistic theory. The goal of
these algorithms is to adaptively improve its performance as you give it more data
to learn from.

Thus far machine learning algorithms have produced impressive results in a host
of different seismological topics. [33] developed a machine learning algorithm which
can detect and locate earthquakes given a recording from a single station. To do
this they trained a convolutional neural network that can make predictions of which
spatial region an event occurred.

At the University of California, Berkeley researchers have developed a smart-
phone application capable of detecting earthquakes given a user’s built-in accelerom-
eter on their smartphone. The goal is to one day incorporate this information to
increase the seismic network density in California which is key for a reliable Earth-
quake Early Warning system [28].

In addition to earthquake detection and location, progress has been made in
the field of Seismic Hazard Analysis. [18] used a hybrid method combining neural
networks and simulated annealing in order to create a model capable of predicting
the peak time-domain characteristics of strong ground-motions. Their combined
model approach was successful in providing reliable estimations of PGA, PGV and
PGD values. This allowed them to make precise estimations of the site ground-
motion parameters for their case studies.

The above-mentioned applications are but a subset of how machine learning is
currently being applied in the field of Seismology. In addition to successes in esti-
mating ground motion prediction parameters, earthquake detection, and earthquake
location, we have also seen impressive results using ML for subsurface tomography
and aftershock pattern recognition.



2 Introduction

With the above mentioned success of applying machine learning algorithms for
seismic applications we set out to rethink how we view two topics in seismology:
denoising seismic data and single-station location using 6 degree-of-freedom (Dof)
data.

Dating since at least the start of Modern Seismology in the 1960’s it has been
understood that observations made about Earth’s processes and underlying struc-
ture must be done in the presence of background noise. To this day there does not
exist a ’best method’ in removing noise. Given the developments using deep neural
networks for speech-recognition (such as those used in smartphone applications), we
set out to use a similar methodology but with seismic data. This topic is described
in Chapter IV.

There is growing intrigue in six-degree-of-freedom (three translational and three
rotational component measurements) in the seismological community. Among other
advantages, 6Dof theoretically can lead to single-station location with higher ac-
curacy and less computational efforts than current-day practices [22]. However,
applying theory to true measurements has been non-trivial. Machine learning algo-
rithms can potentially provide new insight into patterns and features we as humans
may be oblivious to. As such, we were curious to investigate what machine learning
might be able to tell us about rotational motions in conjunction with translational
observations. We’ll dive in greater detail into the theory and motivation behind this
machine learning project in Chapter V.



Chapter 2

Fundamentals of Machine
Learning

2.1 What is Machine Learning?

In 1959 Arthur Samuel, a pioneer in the field of Artificial Intelligence described
Machine Learning as “the field of study that gives computers the ability to learn
without being explicitly programmed.” Machine learning is a subset of the Artificial
Intelligence field which focuses on algorithms that use computational methods to
“learn” information directly from data without relying on a predetermined equa-
tion. The goal of said algorithm is to adaptively improve its performance as you
give it more data to learn from. This definition leads to one of the fundamental
differences between machine learning and statistical learning1; statistical learning
requires explicit ‘rule-based’ instructions whereas machine learning does not. In
addition, statistical learning is generally applied to smaller data sets and attributes
(more on this later). That being said, one cannot stress enough the importance
of the field of statistical learning; it is the theoretical basis for machine-learning
algorithms.

2.1.1 Why Use Machine Learning?

There has been a lot of hype regarding machine learning in the last decade so it
goes without saying that some justification on why one would use machine learning
needs to be stated. Machine learning is an attractive option when: one’s dataset is
both large and complicated, when implementing a solution requires an unreasonable
amount of explicitly coding rules, and when traditional methods (such as statistical
learning) fail to provide a reasonable solution or a solution at all. The reason for the
above is as follows (in order by which they were stated): machine learning can reduce
the amount of code needed to maintain the original non-machine learning approach,
given the tendency of larger data sets (made possible by modern-day hard-drives,
computing clouds, etc.) machine learning can help find patterns we as humans could
not detect given the size of the data set, and finally machine learning can help find
a solution to complex problems such speech recognition (manually doing this would

1A framework for studying the problem of inference, that is of gaining knowledge, making
predictions, making decisions or constructing models from a set of data [24]
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require writing code which could have every rule of pronunciation of the English
language, syntax rules, regional dialect variations, etc.)[15].

2.1.2 Machine Learning in a Nutshell

In Section 2.1 machine learning was defined as a set of algorithms by which a com-
puter can learn on its own without explicit programming. More specifically the
machine learning algorithm is finding an approximation function g which approx-
imates an unknown function f known as the target function. The target function
maps a set of inputs(observations) x onto the set of possible outputs y, f : X → Y .
X and Y are the input space (the set of all possible inputs) and output space (the
set of all possible outputs), respectively [3].

To find this approximating function g the algorithm is giventraining examples,
which are instances from the input space X. In addition we (normally) provide the
associated output value associated with said input. In other words the data set D
consists of input-output pairs (x1, y1), (x2, y2), ..., (xn, yn) for n = 1, 2, ..., N .[3].

During the learning process, or training, the algorithm will search and test dif-
ferent approximation functions g from a set of candidate options known from the
hypothesis set, H, using the training examples as inputs.

In other words, during training the approximation function, g will be given
input-output pairs (xn, yn) from the data set D. For each iteration, it will fine-
tune this function and return the appropriate output y for the given input x. The
approximation function g used for future predictions is the function which best
minimizes the error between the true function f and g.

2.2 Can ML Algorithms Learn?

The question of whether or not a machine learning has learned boils down to an-
swering one fundamental question: can the model generalize? In other words, can
the machine learning algorithm make accurate predictions on data it has never seen
before? During training, the machine learning is referring to the training data to
update dates which will (hopefully) reduce the prediction error. At the end of each
cycle, the ML algorithm refers to a validation set, which is a subset of data set aside
to mimic an out-of-sample error. An out-of-sample error is the error found when
the machine learning algorithm makes a prediction it has not seen during training.

During training the neural network is trying to find the best approximation to
an unknown function f known as the target function using algorithms which are
directly learning from the data set, D. The target function is a function of the
entire input space χ and the output space Y . Our approximating function, g, is
based only a subset of the entire input-output space, D. Thus, despite the outputs
of the initial training, one can not asses whether or not the ML algorithm has learned
the true target function since it is only looking at a subset of the entire input-output
space χ during training [3].

To find out if the ML algorithm can infer outside the data set it was originally
given, the pre-trained model is run on a data set it has never seen before. This data
set is known as the test set. The test set consists of instances which are outside of
our data set D. If the trained neural network can make accurate predictions on data
it has never seen before, then one can interpret this as indicating the neural network
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has learned. Said another way, the approximating function has found weights that
can fit the observations found during training but are not too specific such that it
can not generalize to data it has not seen before.

2.2.1 Validation and Test Set

For the above reasons, part of the machine learning workflow involves splitting the
data set into three pieces: a training set, a validation set, and a test set. Generally,
70% of the data is used for training, 20% is used for the validation set, and the
remaining 10% is used for the test set.

2.3 Types of Learning

There are several Machine Learning architectures and categories, each of which are
appropriate for different data sets and objectives. For example, Google Assistant,
the A.I. - powered virtual assistant which can take in as input both text and speech,
takes advantage of a subset of Recurrent Neural Networks (RNN). RNN are a type
of Deep Neural Network (more on this later) which have been largely successful in
handling data where the order of the input is important such as in speech and text
comprehension. Because of the complex problems Deep Neural Networks (DNN) are
designed to tackle, DNN requires significantly more data and computation power.
Therefore, diving into the Deep Neural Network world might be overkill and, more
importantly, a waste of computing resources and storage space if your objective
could be solved with less-expensive Machine Learning approaches.

Broadly speaking one can categorize Machine Learning systems based on whether
they are: supervised, unsupervised, or semi-supervised; whether they make predic-
tions or only compares examples with what it has already seen (instance-based
learning versus model-based); whether the Machine Learning algorithm learns by
taking in batches of examples or one-by-one (batch learning versus online learning);
and whether the desired output is a category or a continuous value such as an inte-
ger or floating-point number (regressor vs. classifier). Given the focus of this thesis
(and for brevity’s sake), attention will be spent on understanding the difference be-
tween unsupervised and supervised learning. Additionally, a definition of what is a
regressor and classifier machine learning algorithm will be covered.

2.3.1 Supervised vs. Unsupervised

The objective of the Machine Learning algorithm is to find a model (our approxi-
mation function g) which can map an input x, x ∈ X, to their responses y, y ∈ Y .
[24] In supervised learning the data set consists of the training data, xn, and its
associated output measurement, yn.

This is a contrast to unsupervised learning where only the input x is available
for our algorithm to learn from. Intuitively one can already imagine that the unsu-
pervised approach is much more complicated. For example, imagine we wanted to
train a Machine Learning algorithm to classify cat and dog images; If we give it an
image of a cat it will return ‘cat’, and if it is a dog it will return ‘dog’. To do this
we could create an algorithm that takes in images of cats and dogs as inputs and
also provides it with labels for each of these images (i.e. ‘cat’ for cat images and
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‘dog’ for dog images). Thus, during training our algorithm will know what answer
it should come up on its own. This is contrary to unsupervised learning where the
associated output for a given input is not provided.

Both of the above mentioned have their pros and cons. Unsupervised learning
generally requires more data and computing resources because the algorithm must
figure out on its own what the answer should be (more on this in Section 2.3.1).
Supervised learning generally requires fewer data and less computing power (since
the answer is provided to begin with). However, in this case, the algorithm is more
restricted in what it can output because of the bias it is being supervised on. In
addition, there is the logistical headache of providing the answer/labels for each
input, xi.

2.3.2 Regression vs. Classification

Under the Supervised Learning umbrella category2, there are two categories of re-
sponse variables (y) used: regressors and classifiers.

Regressors are real-valued response variables in the form of integers or floats,
i.e. they are quantitative. Classifiers, on the other hand, use categories as response
variables and are thus qualitative in nature.

Let’s look at a couple of examples to make this more clear. Let’s start with
understanding classifier response variables. Imagine we want a Machine Learning
algorithm to classify images. Specifically, it is desired to have an algorithm print
”cat” when it is given an image of a cat and will print ”dog” when it is given an
image of a dog. To train an algorithm to perform said task, the classifier is given
thousands of examples of images of cats and dogs. Each image is a training example,
xi, and the entire collection of images is the training set. Since this is supervised
learning, labels/response variables, y, are known and given to the machine learning
algorithm to learn from. During training the algorithm will take in an image xi and
its associated response variable yi and it will predict whether or not it should print
”cat” or ”dog”. If it predicts correctly based on its associated label, it will strengthen
the parameters (or weights) which helped contribute to the correct outcome. If it
predicts incorrectly, it will adjust its weights to (hopefully) predict correctly the
next time. Given enough examples (and correct algorithm set-up) our algorithm
will learn how to appropriately label the images. This is a textbook example of a
Supervised Machine Learning Classifier.

To understand regressor output variables, imagine instead that it is desirable to
have an algorithm that predicts income ranges given a persons’ education, gender,
sex, and age. Each person is a single training example, xi, and the entire collection of
individuals (whose information we gathered) defines are training set. The associated
labels/response variables, yi, (since this is again a supervised learning task) which
in this case are yearly incomes in the form of integer values are provided. Unlike the
classifier output variable before, the values here are quantitative and not qualitative.
The same logic for training follows as the previous example: the algorithm will take
in examples and compare its predicted yearly income value with is provided then
it will iteratively attempt to find a mapping function which minimizes the error
between the known true values and its predicted value.

2We focus our attention on supervised learning given that both applications fall under said form
of learning.
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2.4 Assessing Model Accuracy

In order to quantitatively describe how the Machine Learning Algorithm behaves
on the training, validation, or a test set, a performance measure must be defined.
The type of Machine Learning algorithm used will narrow the field of performance
measures to choose from. Common evaluation measure for Classifiers are accuracy,
ROC curves, and logarithmic losses. There are about four common error metrics
used for regression problems such as: Mean Absolute Error, Mean Squared Error,
and Mean Squared Logarithmic Error.

This then leads us to the question of whether or not the sweet spot of training
our model based on the data set has been reached such that the approximation
function does a decent mapping between the inputs and outputs, but at the same
time we wish our function to be able to generalize. This question is explored in
Section 2.4.2

2.4.1 Defining the Error Metric

Before diving deeper into different Machine Learning performance measures (i.e.
error metrics), let us formally errors in the machine learning context. In Section
2.1.2 the notion of a Hypothesis Set, H, was introduced. It was defined as the set of
possible options the approximation function g can have. In other words, g ≡ h ∈ H.
The error quantifies how well the hypothesis, h approximates the target function, f
[3]:

Error = E(h, f)

Careful consideration needs to be taken into account when listing possible error
measures. Some metrics are appropriate for certain Machine Learning tasks. Addi-
tionally, some error metrics can influence the outcome of the learning process. Only
a handful of error metrics are defined here for brevity sake. The error metrics defined
below are the four most common error metrics used for Regression problems (see
Section 2.3.2): Mean Absolute Error, Mean Squared Error, and the Mean Squared
Logarithm Error.

The Mean Squared Error (MSE) is defined as the average,squared difference be-
tween the true response variable , yi and the predicted value from the approximation
function g ≡ f̂ [24]:

MSLE =
1

n

n∑
i=1

(log yi − log f̂(xi))
2 (2.1)

Where i stands for the ith observation. MSE is perhaps the most common error
measure for regression. It works well when the distribution of the response variable y
has a Gaussian distribution. Note from the equation that larger errors are penalized
more than smaller ones (as a result from the squaring). Thus, using the Mean Square
Error may not be appropriate if the training and test data set have large outliers.

The Mean Absolute Error Lost (MAE) can be defined as:

MAE =
1

n

n∑
i=1

|yi − f̂(xi)| (2.2)
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In other words, it is the absolute difference between the true response and the
predicted value. MAE is useful to use when the distribution of our response variable
is mostly Gaussian-like, but not quite. This allows us to have outliers in our data
sets without causing huge penalties as is the case with MSE.

Finally, the Mean Squared Logarithmic Error, or MSLE, can be defined as:

MSE =
1

n

n∑
i=1

(yi − f̂(xi))
2 (2.3)

The MSLE first calculates the natural logarithm of the predicted values and then
calculate the mean squared error. Taking the natural log first avoids punishing the
model heavily in the event that the target values are spread out. In other words,
MSLE can be a useful error metric to use when there are large differences in large
predicted values.[19]

It should be stressed the initial error found during training describes how close
the algorithm is to predicting the true target value. However, at the end of the day
the error found from making predictions on never-before-seen data (e.g. the test
set) tells us if the algorithm can generalize (2.2). The training error helps guide the
choice of hyper-parameters, neural network architecture, activation functions, and
so on. However, the training error will not ensure that the test error will be as low
as possible.[24] This leads to the topic of overfitting and underfitting.

2.4.2 Avoiding Underfitting and Overfitting

The goal is to train an algorithm that learns features which will help it accurately
predict on never-before-seen data. In other words, it can generalize (see Section
2.2). When using complex Machine Learning models (such as Deep Neural Net-
works which can consists of thousands of weights/parameters) there runs the risk of
training the algorithm such that it uses an approximation function g which has a low
training error but a large test error (see Section 2.4.1). In other words, the Machine
Learning model is overfitting. Overfitting can occur when the training data set is
too small (relative to the size of the model) and/or is too noisy (i.e. the data has
outliers and/or errors) [15]. Common solutions to avoid overfitting include: using
more data for training, removing data with errors (also known as noise reduction),
and using simpler Machine Learning architectures.

One technique to avoid overfitting is to reduce a complex Machine Learning
model to a simpler model. This is known as regularization. Regularization comes in
many shapes in forms. For linear models regularization takes the form of constrain-
ing the weights both in how many are used and their contribution to the overall
algorithm. Some common linear regularization approaches include: Ridge Regres-
sion, Lasso Regression, and Elastic Net [15]. The interested reader should check out
Aurélien’s book [15] to learn more on linear regularization approaches (or one of the
many wonderful online resources available for free).

The scope of this Thesis deals with Deep Neural Networks, thus the regular-
ization techniques of interest here are: Early Stopping, L1 and L2 Regularization,
Dropout, and Max-Norm Regularization. Some of these methods, such as the L1

and L2 Regularization and the Max-Norm Regularization are similar to linear reg-
ularization approaches in that they attempt to constrain the number and size of
the weights. Early Stopping, on the other hand, avoids overfitting by terminating
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the training process when overfitting begins. More specifically, the training is ter-
minated at the point where the error on the validation set begins to increase (and
continues to increases) while though the error on the training set is decreasing[4].

Dropout, perhaps the most popular regularization tool used for Deep Neural
Networks, is designed to prevent overfitting from occurring by randomly setting a
number of layer outputs to zero. Essentially, we introduce another hyperparameter
which assigns a probability that the output layer is retained. The reason being that
Neural Networks can develop a co-dependency amongst each other during training.
Specifically, during training some layers may adjust in order to correct for the mis-
takes of previous layers. This co-dependency will make the model fit the training
data but will the restricted in how it can generalize to unseen data [41].

Overfitting can be seen as an end member case of training going awry, the other
end member being underfitting. In this scenario the Machine Learning algorithm
fails to capture the underlying trend of the data. In other words, the error from
the training and validation set will remain more or less static or possibly increase
during training. One can attempt to avoid underfitting by using a more complex
model (e.g. more layers in the case of Deep Neural Networks), reducing the amount
of regularization used (if it is implemented), and/or being more selective on the
training data used[15].

2.5 Deep Neural Networks

Overview

This would not be a proper overview of Machine Learning overview the earliest
machine learning architectures, perceptrons were not discussed. Perceptrons can be
viewed as building blocks which can be combined to make a shallow neural network.

Training these shallow (and larger) networks is done via gradient descent opti-
mization techniques, and back propagation. The architecture of Deep Neural Net-
works will be covered once the aforementioned topics are covered. The last sections
of this chapter will be devoted to what Convolutional Neural Networks and Autoen-
coders are and how they work. The latter two models are the model architectures
used for this thesis.

2.5.1 Shallow Neural Networks

One of the simplest machine learning architecture is the perceptron. Having a firm
understanding of how perceptrons work will make the transition to shallow and then
deep neural networks fairly straightforward.

The perceptron was invented by Frank Rosenblatt in 1957. It consists of a single
input layer, where each input node is connected to a weight, and an output node
[15]. For a given training instance (xi, yi), the perceptron will compute a weighted
sum of its inputs and then applies a step function to the computed sum.

h(x) = step[
∑

(wi ∗ xi)] (2.4)

Our simple perceptron can be used as a linear binary classifier; given a training
example with n many features, the perceptron will computed a linear combination
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of the inputs. If the threshold is exceeded, it will output a positive class else it will
output a negative class.

geron step function

Training a perceptron is fairly straight forward: one at a time the Perceptron is
given a training instance (input), the input is multiplied by the weight, the product
is then fed through some threshold function. The output of which is a prediction.
The difference between this prediction and the true observation is computed and
used to reinforce connecting weights that contributed to the correct prediction [15].
The learning rule can generically be defined as:

wij = wij + η(ŷj − yj)xi (2.5)

The step function serves as an activation function. The activation function used
determines which neuron should fire or not. There are a plethora of activation
functions. The choice of activation function is influenced by what the objective of
the machine learning model is [4]. Some popular activation functions including the:
logistic function, hyperbolic tangent function, and rectified linear units (ReLU).
Section 2.5.2 covers some of the more popular activation functions.

In many cases there is an invariant part of the part of our prediction called the
bias [4]. The bias term allows the activation function to be shifted left or right in
order to better fit the data. For example, suppose we have an identity activation
function, h(x) = x. Multiplying the weight theta with the input x, would gives us
a linear function starting from the origin.

During training weight theta is updated. In other words, the gradient of the
function becomes either flatter or steeper with each update. It may be the case,
however, that the fit to the true prediction might improve if we could also translate
(shift) our linear function by some constant. To do this a bias term is added to the
weighted sum and fed through the activation function. And thus, a better fit to the
observations can be made.

Multi-layer Perceptron

While a single perceptron might serve as a binary classifier, we can begin to build
more complicated architectures by ‘stacking’ them. Doing so gives us a Multi-Layer
Perceptron.[15] Multi-Layer Perceptrons (MLPs) consists of one or more input layers
and several activation functions. The layer with our activation functions is known
as a hidden layer. Three or more hidden layers define a Deep Neural Network.

The overall process of training an MLP is the similar as a single Perceptron.
We begin by giving our neural network a training instance, this then moves forward
to the next layer which is our hidden layer. Here we multiply by the weights, the
output then goes to our final layer which then outputs a prediction, and we end
forward pass by computing the error between our prediction and the true value.

This is where the similarities begin to diverge. To update the weights in our
hidden layers, we go back one layer at a time (i.e. via the reverse pass) and compute
how each connecting weight contributed to the overall error. With this information
we make update the weights to reduce the error [16].

This process of moving backwards, one row at time, and computing how much
each neuron in the last hidden layer contributed to each output neuron’s error is
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known as back-propagation. Before the introduction of backpropagation, researchers
struggled to train multi-layer perceptrons. Without it, and advances in computation
power and storage capabilities, machine learning struggled for years to get its wings
of the ground. Given the importance of backropagation we will describe the maths
in some detail in Section 2.5.3.

2.5.2 Activation Functions

There are a handful of activation functions floating around. Some of the most
popular activation functions inclduded: step functions, linear functions, sigmoid
function, hyperbolic tangent, and rectified linear units (ReLU). Linear activation
functions will be discussed first along with an overview of some of their shortcomings.
Afterwards hyperbolic tangent and ReLU will be covered as they are the most widely
used today.

Recall that the purpose of an activation function is to output the sum of the
products of the incoming inputs and weights [4] in some hidden layer l for some
node i:

yi =
N∑
i=1

(wi ∗ xi) + bias (2.6)

For example, one could define a liner activation function (sometimes referred to
as an identity activation function), which has the form:

a(xi) = c ∗ xi (2.7)

But there are two drawbacks using the linear activation function in our hidden
layer. First, the derivative of a linear function is a constant, which means that
it has no relationship with X. More importantly, this means we have a constant
gradient. Thus, the weight updates made by back propagation (see Section 2.5.3)
will be constant and independent of the input. Second, we state (without proof) an
important theorem [4]:

Theorem 1 A multi-layer network that uses only the identity activation function
in all its layers reduces to a single-layer network performing linear regression.

In other words, a combination of linear functions is still a linear function.

Why does this matter? Remember that in a neural network the output of one
layer is now the input of the next. Instead of using a standalone approximation
function g, as is the case non deep learning algorithms, deep neural networks use
composite functions.

Composite function give machine learning algorithms the ability to model more
complex functions than the individual functions of which it is made of. Thus, being
left with a linear function at the end will give the machine learning algorithm flexi-
bility to model only linear functions. (Which probably be of any use if the objective
is to model complex process). For this reason it is desirable to use activation func-
tions which are nonlinear and that, when combined, will give the neural network
more expressive power [4].
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Given the above knowledge, the hyperbolic tangent function is an attractive
activation function because it is: a) differentiable, b) continuous, and it is c) non-
linear (so they can be stacked and be used to model complex functions):

A(xi) = tanh(xi) =
2

1 + e−2xi
− 1 (2.8)

Note that the output is restricted to values between -1 and +1, giving a mean
centered at 0. Which means that the output of each layer will be semi-normalized,
and thus speeds up convergence [15].

Another activation function of interest is the rectified linear unit (ReLU) func-
tion. It has the form of:

A(xi) = max(0,xi) (2.9)

This is also an attractive function because combining them forms a nonlinear
function. It is not however continuously differentiable (note the kink at z = 0).
And this abrupt change in slope can make Gradient Descent bounce around. But,
there is a distinct advantage to ReLUs, their sparsity. Given that our ReLU will
occasionally spit out a 0, the density of the neural network will be less. In other
words, we have less neurons which are giving an output signal. Which means that
computationally speaking, there are less computations for both the forward pass
and backward pass. This sparsity does not exist when all of our neurons print out
an output which would be the case if a sigmoid or hyperbolic tangent functions were
used.

That being said, the ReLU does encounter the problem of vanishing gradients.
There could be a scenario where too many of the neurons in the model go to 0. Which
means that the neurons will be unresponsive to updates because their gradient is 0
(and thus we make no weight update).

With that said, both the hyperbolic tangent and ReLU activation functions are
widely used and perform fairly well. As a rule of thumb one begins with ReLUs as
they are ‘general approximator’. Sigmoid activation functions (not discussed here)
are more well-fitted for classification.

2.5.3 Backpropagation

Backpropagation looks intimidating, tut having a firm understanding of how it works
allows the machine-learning practioner to avoid some costly mistakes when designing
their model architecture.

Our data set can be defined as the set of pairs (xi,yi) where x, y are elements
of real numbers where n = 1 to k. Given m training examples, the cost function at
the lth layer can be defined as:

J(w, b) =
1

m

m∑
i=1

J(w, b; xi,yi) +
λ

2

nl−1∑
l=1

sl∑
i=1

sl+1∑
j=1

(wl
ji)

2 (2.10)

using the mean squared differences (Section 2.4.1) gives:

J(w, b) =
1

m

n∑
i=1

||yi − f̂(xi)||2 +
λ

2

nl−1∑
l=1

sl∑
i=1

sl+1∑
j=1

(wl
ji)

2 (2.11)
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where, b is the bias term, J(x, b) is the generic term for our mean sum squared
error cost function, and lambda is the weight decay parameter. The second term of
Equation 2.11 helps prevent over fitting.

When the model is first compiled the weights are initialized to have random
values and the bias term is added to each layer (except the input and output layer)
such that it is both random and near 0. During the forward pass (when the input
is moving from one layer to the next) the input is multiplied by the weights, a
prediction is made (the output of our final layer), before finally an error is computed
between the true value and the prediction which can be defined as δnl

i .
An update rule for the ith in the lth layer weight and bias term can be defined

as:

wl
ij = wl

ij − α
∂

∂wl
ij

J(wl
ij, b) (2.12)

bli = bli − α
∂

∂bli
(2.13)

Putting this all together, the algorithm to implement backpropagation is [44]:

1. Perform the forward pass, computing the activation functions l1,l2, l3 until the
last layer.

2. δnl
i = ∂

∂z
nl
i

1
2
||yi − f̂(xi)||2

3. For l = nl − 1, nl − 2, nl − 3, ..., 2
For each neural node i in layer l, set

δnl
i = (

∑sl+1
j=1 wl

ijδ
l+1
j )f ′(zli)

4. Compute partial derivatives:

∂
∂wl

ij
J(w, b; xi,yi) = Aljδ

l+1
i

∂
∂bli
J(w, b; xi,yi) = δl+1

i

where znl
i is the weighted sum of the inputs for the ith neural node and lth layer.

For example for the output of the first layer (not the input is):

z2i =
∑N

j=1 w1
ijxj + b1i

2.5.4 Convolutional Neural Networks

Convolutional neural networks are a type of artificial neural network that are de-
signed to handle grid-like structured input, such as time-series data and images.
Unlike feed-forward networks, convolutional neural networks preserve the temporal
and spatial dependencies in its input. In the broader context of Machine Learn-
ing, Convolutional Neural Networks (CNN) are one of the most popular learning
architectures today given their effectiveness in image and video recognition, natural
language processing, image analysis and classification, just to name a few.
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Unlike standard densely connected neural networks (see Section 2.5.1) which
operate on matrix or tensor multiplication, CNN operate on convolutions. A con-
volutional neural network is composed of one or more convolutional layers, pooling,
and linear output layers followed by a fully connected neural network.

One of the great advantages, aside from preserving spatial and temporal de-
pendencies, of CNN is their sparse interactions, parameter sharing, and equivariant
representations in.[16] CNNs can learn spatial hierarchy of patterns, allowing them
to learn increasingly more complex, visual concepts.[4]

The same principles apply when training a convolutional neural network com-
pared to a feed-forward network. Perhaps the most notable difference is the imple-
mentation of back propagation through convolutions.

Convolutional neural networks using two-dimensional image data as input are
described in detail here because it is easier apply the theory from the 2D case to
the 1D case than it is vice versa. The subtle differences between the input set-up
for training using 1D time-series data as opposed to 2D images is discussed at the
end of this chapter.

Architecture of a Convolutional Neural Network

Just like a standard, feed-forward neural networks, convolutional neural networks
(CNNs) are composed of three main components: an input layer, hidden layers, and
an output layer. However, the ‘hidden layers’ of a CNN are instead replaced with
one more convolutional layers and subsampling layers followed by fully connected
layers.

An image can be interpreted as a two-dimensional grid of pixels with three
channels, each referring to the intensity of the red, green, and blue color scheme
(RGB). The input is thus an l x b x d image where l is the height, b is the breadth,
and d is the depth. As an example, propose we have a 32 x 32 image with three
channels for the colors. Thus, l = 32, b = 32, and d = 3 [4]. In the convolutional
layer, the element that will carry out the convolutions is known as the kernel or filter.
The kernel will have n x n x q dimension where n is smaller than the dimensions
of the image and q is allowed to vary [44]. The kernels are the parameters that are
learned during training. For our example, let’s define a 5 x 5 x 1 kernel.

During convolution, the kernel will glide across the entire l x b image and per-
forms a dot product, the number of alignments between the kernel and the image
will determine the output dimension of the next layer called the feature map [4].
Feature maps will have dimension of l–n + 1. Giving feature maps of 28 x 28 in
our example. The step size, or stride, of the kernels are specified prior to initiating
training. In our example we’ll leave this to 1, i.e. the kernel is moving one pixel at
a time.

The number of features maps made by a convolutional layer determines the
number of parameters that are fine-tuned during training. In other words, the
number of feature maps/filters used determines the complexity of our convolutional
neural network [4]. The more filters, the more complex.

It is common for the number of feature maps to increase as the input moves to
deeper layers. The idea being that the first few layers can be considered as ‘gen-
eral feature extractors’ that detect low-level features such as edges, color, gradient
orientation, etc [1]. Moving toward the deeper layers, the convolutional neural net-
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work will learn larger patterns made from the previous layers, creating a hierarchical
representation of the original input [10].

Subsampling with a mean or max pooling is typically performed on the feature
maps. The pooling layer reduces the size of the feature map. Reducing the dimension
of the convolved output is of importance because it is a) useful for extracting the
dominate features and b) it reduces the computational resources during training.[1]

In order to give the CNN more flexibility, one generally uses nonlinear activation
functions (see Section 2.5.2). As a starting point for training convolutional neural
networks it is common to start off with ReLU activation functions. The ReLU
layer does not change the dimensions of the layer because it is a simple one-to-one
mapping of activation values [4].

To compute the convolution of the qth feature map in the kth to the (k+1)th
row we use:

h
(k+1)
ijq =

l∑
r=1

n∑
s=1

n∑
d=1

w
(q,d)
rsd h

k
i+r−1,j+s−1,d

∀i ∈ {1, .., l − n+ 1}, ∀j ∈ {1, .., l − n+ 1}, ∀q ∈ {1, .., l − dd+1}

Where i, j, d represent the height, width, and depth of the feature map. The
kth layer is represented by a 3-dimensional tensor, h

(k)
ijq . Parameters(i.e. weights)

for the qth feature map in the kth row are defined by a 3-dimensional tensor w
(q,d)
rsd

Note that the above formulation is not a convolution, but rather, a correlation.
The commutative properties of convolution allow us to flip the kernel and perform
correlation. Most out-of-the-box machine learning APIs perform correlation instead,
but the name convolution stuck. Hence, they are called convolutional neural net-
works and not correlation neural networks.[16]

Practical Example: 1D Case

Both from an application and practical point of view, 1D convolutional neural net-
works closely resemble their 2D counterparts. Instead of images, the input to a 1D
CNN is time-series data or text. The main difference comes in how we handle the
input and how the convolution slides across our data.

Given that the theory behind 2D Convolutional Neural Networks has been cov-
ered in detail above, we’ll illustrate the 1D case via an example. We’ll demonstrate
in detail how the input of a 1D convolution is treated during training by using our
s-phase picker (see Section 5.7) as this might serve most useful to readers.

Input for the 1D Case

Unlike a 2D convolutional neural network which takes in as input (height, width,
channels) the input of a 1D convolutional neural network takes the form of:

(number of points, channels)

Taking as example the synthetic data generated for the s-phase picker (see Sec-
tion 5.7), this meant our CNN had an input shape of:
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(1800, 4)

Corresponding to the fact that our data set consisted of 60 second records, with
a sampling rate of 20Hz which left us with 1800npts. We used four-component data;
therefore the number of “channels” in our case is 4.

For our simple s-phase picker we used the following model architecture (see Figure
2.1):

Table 2.1: Summary of Convolutional Neural Network
Layer (type) Output Shape Param #

conv1d (Conv1D) (None, 1800, 8) 200
max pooling1d (None, 900, 8) 0
conv1d (Conv1D) (None, 900, 16) 784
max pooling1d (None, 450, 16) 0
flatten (Flatten) (None, 7200) 0
dense (Dense) (None, 8) 57608
batch normalization (None, 8) 32
dense (Dense) (None, 1) 9

Total params: 58,633
Trainable params: 58,617
Non-trainable params: 16

Breaking this apart, we have:
Layer 0: Our input layer with dimension (1800, 4)
Layer 1: Our first convolutional layer. (With Keras one can omit specifying the
Input layer since it is only a placeholder). The tensor has dimension (1800, 8); 1800
referring to the number of sampling points and a kernel of length 8.
Layer 2: Maxpooling of size 2. Reducing the dimension of input from 1800 to 900.
Leaving us with a (900, 8) matrix.
Layer 3: Another 1D Convolutional layer with filter size of 16. This filter is learning
higher order features as opposed to edges in the previous convolutional layer. Our
output is a matrix of shape (900, 16)
Layer 4: Another maxpooling layer of size 2. The output matrix is now half: (450,
16).

2.5.5 Autoencoders

Introduction

Autoencoders are a type of Deep Neural Network architecture which can be used for
unsupervised learning. They can be used for: dimensionality reduction, principle
component analysis, and matrix factorization [4]. The beauty behind these neural
networks comes from a hidden layer known as the coding. The coding layer has a
lower dimension than the input. Which means that, if the neural network is trained
to reconstruct its input, this coding layer must contain the information needed to
represent the input but at a lower dimension. This makes them powerful feature
extractors.
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The architecture of autoencoders can vary, but the traditional set-up defines
three major components: the encoder, coding, and decoder. Typically, the encoder
and the decoder are symmetric; i.e. for an M -layer autoencoder, the number of
units in the kth layer is the same as the (M - k + 1)th layer. [4] Since autoencoders
are feed-forward networks, one can use loss functions and output unit types, as
traditional feed-forward networks [16].

To prevent the autoencoder from trivially learning its input, i.e. the identity
function, it is common practice to corrupt the input; therefore forcing the neural
network to learn useful features. Such autoencoders are known as denoising autoen-
coders.

Autoencoder Architecture

Machine learning algorithms attempt to capture aspects of the unknown distribu-
tions made by the observed data set. This is the driving force behind machine
learning. One method to capture the essence of this unknown distribution is with
unsupervised feature learning algorithms such as autoencoders [6].

Figure 2.1: Autoencoder mapping. f and g represent the encoder and decoder
mapping functions, respectively.

The autoencoder can be considered as being composed of two major pieces: an
encoder and a decoder. Given an input x, we define the encoder f as the function
which maps the input into an internal representation f(x) known as the coding. The
coding, f(x) is then mapped back to the input space with the decoding function, g.
(See Figure 2.1). The composition of f and g is called the reconstruction function
r , giving us r(x) = g(f(x)).

The approach of training an autoencoder is the same as the case of training a
standard feed-forward network: the loss function is minimized using optimization
techniques using some form of weight updating via back-propagation. The loss
function can be defined as:

L(x, g(f(x))) (2.14)

Where the loss function, L, penalizes g(f(x)) for being dissimilar to, x [16].
To prevent the autoencoder from simply memorizing, or copying its input, one

can corrupt the input by adding noise to it. This corruption process can be written
as C(x̃|x). Doing so makes the autoencoder learn a reconstruction distribution,
preconstruct (x|x̃) from the training pairs. The algorithm to find the reconstruction
distribution is thus [16]:
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1. Sample a training example xi from the training data

2. Sample the corrupted version x̃i from C(x̃|x)

3. Use the instances from steps 1 and 2 to estimate the autoencoder reconstruct
distribution preconstruct (x|x̃) = pdecoder (x|h) where h is the output of the
encoder f(x̃) and pdecoder defined by the decoder g(h).

Denoising Autoencoder

In order to reduce the corruption process, the neural network learns/captures the
probabilistic distribution of the input. We call these type of autoencoders, where
the input has been corrupted with noise added to it, Denoising Autoencoders. [6]
Denoising autoencoders are a type of regularized autoencoders. Regularized au-
toencoders use loss functions which increase the likelihood the neural network will
not only trivially copy its input. In other words, regularization forces the auto-
encoder to be less sensitive to input, but minimizing the reconstruction error forces
it to remain sensitive to similar inputs. Sparse Autoencoders are another type of
regularized auotencoder, but they will not be discussed here.

Denoising autoencoders are trained minimizing the denoising loss function [6]:

LDAE = E[L(x, r(N(x))] (2.15)

which describes the expectation of the training distribution and corruption noise
source and N(x) is a stochastic corruption of x (e.g. Gaussian noise corruption).

The followig theorom is stated without proof [6]

Theorem 2 Let p be the probability density function of the data. If we train a
denoising autoenocder (DAE) using the quadratic loss and corruption noise
N(x) = x+ ε with

ε ∼ N (0, σ2I)

then the optimal reconstruction function r∗(x) will be given by

r∗(x) =
Eε[p(x− ε)(x− ε)]

Eεp(x− ε)
(2.16)

for values of x where p(x) 6== 0.
Moreover, if we consider how the optimal reconstruction function r∗σ behaves asymp-
totically as σ → 0, we get

r∗σ = x+ σ2∂ log p(x)

∂x
+ o(σ2)asσ → 0 (2.17)

The takeaway is that learning the gradient of the logpdata is one method to learn
the actual distribution of the input, pdata [16].



Chapter 3

Fundamentals of Seismology

3.1 Equation of Motion

The equation of motion of an infinitesimal cubic element in a medium undergoing
internal motions can be defined as:

ρ
∂2ui
∂t2

= fi +
∂σij
∂xj

(3.1)

where σij is the symmetric stress tensor

σij =

∣∣∣∣∣∣
σ11 σ12 σ13
σ21 σ22 σ23
σ31 σ32 σ33

∣∣∣∣∣∣ (3.2)

ui is the displacement field, ρ is density, and f is the body force per unit volume
acting on the cube. If we ignore gravity or body forces from Eq. 3.1 we have the
homogeneous equation of motion

ρ
∂2ui
∂t2

=
∂σij
∂xj

(3.3)

which in Einstein notation can be rewritten as

ρüi = σij,j (3.4)

The constitutive laws provide a relationship between stress and strain. Using
the elastic constitutive equation, we have

σij = Cijklεkl (3.5)

where

εij =
1

2
(δjui + δiuj) (3.6)

is the infinitesimal strain tensor and Cijkl is the third-order elastic moduli tensor.
The elastic moduli contains 81 terms relating the nine elements of the stress tensor
and the nine elements of the strain tensor. The symmetry of the stress and strain
tensor reduces the 81 terms down to 36. A final symmetry relationship

Cijkl = Cklij (3.7)
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reduces the 36 terms down to 21. The stress-strain behavior in the above case de-
pends on direction. In the case of an isotropic elastic substance we are left with only
two independent elastic moduli, λ and µ, which are the Lame constants. Inserting
the Lame parameters into Eq. 3.5 gives

σij = (λδijδkl + µ(δikδkl + δilδjk))εkl (3.8)

δij is the Kronecker delta. Taking the equation of motion Eq. 3.1, the infinitesi-
mal strain tensor Eq. 3.6 and Eq. 3.8 and simplfying terms gives

ρü = f + (λ+ 2µ)∇(∇ · u)− µ∇× (∇× u) (3.9)

which leaves us with partial differential equations for displacements in a homo-
geneous isotropic medium.

Helmholtz’s theorem states that any sufficiently smooth and rapidly decaying
vector field can be considered as the sum of a curl-free and divergence free vector
field. Meaning that the vector field u can be represented in terms of a vector
potential Ψ and scalar potential Φ

u = ∇Φ +∇×Ψ (3.10)

if

∇× Φ = 0 and ∇ ·Ψ = 0

∇Φ and ∇×Ψ are the P-wave and S-wave components of u, respectively. Since
we have a curl free scalar potential and a divergence free vector field, we have

∇× u = ∇×∇×Ψ (3.11)

∇ · u = ∇2Φ (3.12)

In other words, we can separate the P and S-wave components in an isotropic and
homogeneous medium by measuring the divergence and curl of an elastic wavefield.

One can directly measure the curl of the wavefield with a rotational sensor or
indirectly using the spatial seismic wavefield gradients [40]:

ω =
1

2
∇× u =

1

2

∂yuz − ∂zuy∂zux − ∂xuz
∂xuy − ∂yux

 (3.13)

where ω = [ωx, ωy, ωz]
T . We can also write Eq. 3.13 taking its time derivative:

ω̇ =
1

2
∇× v =

1

2

∂yvz − ∂zvy∂zvx − ∂xvz
∂yvy − ∂yvx

 (3.14)

where ω̇ is the rotation rate and v is the velocity.
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Free Surface Effects on Rotational Motion

The vertical components of the stress tensor vanish at the free surface, thus the
strain tensor components εiz = 0 for i = x, y in Eq. 3.6. Which means that, at the
free surface, the spatial gradient (Eq. 3.13) can be rewritten as[11]:

ω =
1

2
∇× u =

1

2

 ∂yuz
−∂xuz

1
2
(∂xuy − ∂yux)

 (3.15)

Meaning that, at the Earth’s free surface, horizontal rotation corresponds to tilt.
As a consequence of Eq.3.15 P-waves have no rotational component inside a

homogeneous medium. However, do to the free surface boundary condition, there is
a contribution to horizontal rotation from P-to-SV converted waves [11].

3.2 Comparing Rotations and Translations

Considering the case of a transversely polarized plane traveling in the x direction
with a wave with displacement of:

u = (0, uy(t−
x

c
), 0) (3.16)

where c is the horizontal velocity. The rotation is thus:

ω =
1

2
∇× u = (0, 0,−u̇y(t−

x

c
)/(2c), 0) (3.17)

leaving us with:

ωz = − u̇y
2c

(3.18)

Assuming plane wave propagation Eq. 3.18 has some profound results. Namely,
we expect the vertical rotation and transverse velocity seismograms to: 1) have
identical waveforms and 2) the amplitudes are proportional to twice the phases
velocity. The same assumptions is true for the vertical rotation rate and transverse
acceleration seismograms[22].

The vertical acceleration and radial rotation rate (assuming a plane wave prop-
agation) in the x direction for P-, SV-, and Rayleigh waves, are related by [11]
[6]:

c = − üz
ω̇y

(3.19)

As a result of the similarity of the transverse velocity and vertical rotation one can
investigate the source direction of SH-type motions. [20] [30] [17] found that rotating
the transverse component of a translational seismic record, until the resemblance
with the vertical rotational measurement is at a maximum, corresponds to the back
azimuth of the event.

In addition, Eq. 3.18 signifies one can estimate phase velocities using collocated
point measurements of rotational and translational motions which has been done by
[21] [20] [32] [11].
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3.3 Array-Derived Rotations

In a linear elastic medium when can describe, assuming infinitesimal deformation,
one can describe the displacement of a point x in relation to that of a neighboring
point x + δx as [5]:

u(x) + εδx + ω × δx (3.20)

Eq.3.20 implies that, given then complete displacement field, one can theoreti-
cally compute rotational ground motions[11]. However, additional knowledge and
assumptions of the Earth’s structure must be imposed in order to approximate
all components of the rotation vector if the displacement field is only measured
at Earth’s surface[22]. One approach is to use the surface arrays of translational
seismometers to estimate the horizontal and vertical components of the rotation
vector[der] [43] [22] [11]. This method can be applied when the P- and S-wave ve-
locities beneath the array are known and deformation is linear over the array area
[22].

When considering computing array-derived rotations one should also consider
that translational sensors are contaminated by rotations. In particular, the hori-
zontal components of strong motion and long-period observations are sensitive to
horizontal components of the rotation vector. In theory one should be able to correct
this effect by measuring the seismometer tilt, but that has yet to be fully realized
[11].



Chapter 4

Denoising Seismic Signals with
Deep Neural Networks

4.1 Introduction

Seismic signals provide the observations which drive discoveries of the Earth, allows
for imaging the Earth’s interior, drives oil exploration, and can be used in conjunc-
tion with assumptions of the speed of traveling waves to detect Earthquakes. It is
therefore pivotal that as much of the signal generated from the source is preserved.

In reality, seismic data is contaminated with various sources of noise including,
but not limited to: instrumental, tidal, pressure variations, and traffic. It is therefore
common practice to apply filters. However, knowing which filter to apply is not
intuitive. Additionally, applying a filter might remove relevant information from
your signal if the noise is in the same frequency band as your signal.

Over the years there have been efforts to find an effective means of removing
noise (denoising) seismic data. However, these methods usually require specifying
some sort of threshold which, if selected incorrectly, can lead to false signals or loss
in effective signals [25] [49].

Given the ongoing efforts of improving the signal-to-noise ratio of seismic data,
our goal for this Thesis is to find a new approach to denoise seismic records with a
deep learning approach.

Our approach of using deep neural networks for denoising was motivated by the
new gains made by in the audio signal processing domain. Typical signal processing
of an audio file include: removing ambient noise, taking into account unequal dis-
tribution microphone recording, enhancing certain frequency bands and suppressing
others, and so on. In recent years deep neural networks have been introduced to
combat some of the above-mentioned processing. Most famously are the applications
of deep neural networks for speech recognition enhancement which are the driving
force behind voice-recognition applications such as Amazon’s Alexa and Apple’s Siri.

This paper is structured as follows: first, we will go over current approaches
of denoising seismic data. In the same section, we will ignite the motivation of
why the use of Deep Neural Networks for this task is attractive. Next, we will
go over our machine learning workflow which includes downloading, pre-processing,
and defining a machine learning algorithm architecture. We will then discuss the
results from training, testing, and transfer learning as they presented. We will end
by going over the next steps in store for our neural network.
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4.2 Background

4.2.1 Denoising Neural Networks

The driving force behind today’s automated speech recognition (ASR) are deep neu-
ral networks. They operate by first breaking apart and analyzing the components
(phonemes) of the incoming speech waveform, digitizing it, analyzing the meaning
before feeding it to a neural network. One of the challenges behind speech recogni-
tion is the presence of background noise [25]. As a result, one of the routes currently
being investigated for improving the signal-to-noise ratio of speech are deep neural
networks. In particular the denoising autoencoder, which is a type of deep neu-
ral network built with convolutional bases (see Section 2.5.4), is demonstrating its
ability to reconstruct a clean speech signal given its own noisy input [7] [45] [38]
[25].

The challenge of improving the signal-to-noise ratio facing ASR parallels the
challenge the Seismological community faces with seismic recordings. Instead of
removing noise for the purpose of ASR, seismologists desire to remove ambient noise
(or microseisms) to enhance an earthquake signal (for example). Given the promising
results of denoising audio files, we were motivated to use denoising autoencoders.

4.2.2 Current Approaches in Seismology

There are groups within the geophysical community incorporating various types of
machine learning architectures for improving the signal-to-noise ratio. [51] have
approached this problem using Convolutional Neural Networks (see Section 2.5.4)
which are a type of neural network designed to work with grid-like structured data
such as images and time-series data (in the 1D case). Their approach involves
first transforming their data into the frequency domain then using both the real and
imaginary part as input to their CNN [51]. [50] developed a denoising method based
on a parametric dictionary learning scheme. Dictionary learning is a branch of signal
processing and machine learning which exploits underlying sparse structures of the
input training data. With these sparse representations, they were able to capture
the characterizations of seismic data which could then be used for denoising. [35]
used a combination of a U-net (which are formed using CNN) and incorporating a
pre-trained neural network known as ResNet34. In doing so they took advantage of
a feature extracting capabilities of CNN and the benefits of using pre-trained neural
networks. Using a pre-trained neural network for training is a machine learning
technique known as transfer learning, and it is an approach we attempt here. At
the moment geophysicists are still exploring different techniques in denoising using
machine learning algorithms. It remains to be seen which method is most effective
in denoising when considering the computation time, pre-processing, and memory
requirements. As mentioned in the previous section our architecture of choice are
denoising autoencoders.
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4.3 Methodology

4.3.1 Software

Open-source software and free data available to the public were used for the exe-
cution of this Thesis. The list of open-source machine learning libraries for use is
constantly expanding, as is the ‘crowd favorite’. We used the open-source Keras
Python Deep Learning library API [26]. It currently has one of the largest com-
munity support, fastest-growing, and most scholarly cited (among other criteria)
[47]. Keras is user-friendly, modular, extensible, and there are a plethora of tutori-
als online to learn from. The heavy-lifting tensor multiplication and convolutional
operations are done with TensorFlow. TensorFlow is another open-source software
that performs its computations with an optimized C++ backend.

For querying, downloading, and pre-processing our seismic data set we also used
Python. In particular, we heavily relied on NumPy, Pandas, and ObsPy Python
libraries.

4.3.2 Data Set

Our original intent was to train our model on time-series seismic data recorded by
the STS-2 broadband translational sensor in Wettzell, Germany (WET). However,
the cataloged and archived events for WET are predominately teleseismic and have
a magnitude of 5.0 and above. This limited the number of events we could use for
training. At the time of our query, there were less than 1000 events we could use
for our data set. With this limitation, we turned our focus to train our denoiser on
local events with a minimum magnitude threshold of 3.0.

This left us with two options: 1) use data from other sensors which are part of
the German Regional Seismic Network (GRSN) or 2) use seismic data recorded in
California. We chose the latter because the seismic network in California is robust,
high quality, and there are numerous local events to choose from given the seismicity
of the state. In choosing to use data from California we committed ourselves to apply
a machine learning technique known as transfer learning. In essence, we use a pre-
trained neural network on a similar, but different, data set. We discuss how this
was done in more detail in Section 4.6.

Our data set, therefore, consisted of STS-2 broadband data from Northern Cal-
ifornia. Given the rich history of earthquake monitoring and phase-arrival picking,
we were able to download our data set along with picked arrival times from the
Northern California Earthquake Data Center (NCEDC) for BHE, BHN, and BHZ
channel data. We chose four stations with high signal to noise ratio: Columbia
College (CMB), Hull Mountain (HUMO), McLaughlin Natural Reserve (MNRC),
and Bear Valley Ranch (PKD). We chose events within a 300km distance of each
station. Events had a minimum magnitude of 3.0. With this criterion we found
approximately 4,300 unique station recordings within a 5-year time span.

4.3.3 Preprocessing

Each component of our records (Z, N, E) were treated as a ‘unique’ instance and
thus artificially expanded our training set by a factor of three, giving us a total of
13,000 training instances to learn from (and thus satisfying our minimum training
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data set desires). Waveforms were detrended, high-passed filtered with a maximum
frequency of 0.5Hz, and normalized. We then decimated our traces from 40Hz to
20Hz sampling rate; allowing us to reduce the input length size from 3600npts to
1800npts. This was done in order to reduce the number of parameters the machine
learning algorithm would have to learn. Waveforms were then trimmed to 90-second
records, starting 30 seconds before the picked P-arrival.

Our denoising autoencoder needs two inputs: an input x and a corrupted version
x̃. (see 2.5.5) To create our corrupted version x̃i for each input xi in our data set,
we downloaded recorded seismic data between catalogued earthquake events. This
is our noise and corruption process. We took this downloaded noise and added
it to our pre-processed data. This left us with two versions: a clean version and
a noisy/corrupted version. The noisy waveform and its associated original clean
version are the input and label to our denoiser autoencoder, respectively.

4.3.4 Model

We used a denoising autoencoder (DAE) for our model architecture. Autoencoders
are a type of Convolutional Neural Network which are used for unsupervised learning
(see Section 2.5.5). If trained reliably, an autoencoder will take an input, convert it
to a lower dimension, reconstruct the dimension, and then output something that
looks similar to its original input. Assuming the model is trained to recreate the
input, the hidden layer ‘bottleneck’ in the neural network forces the autoencoder to
contain information needed to represent the input but at a lower dimension. This
makes autoencoder power feature extractors.

To prevent the autoencoder from trivially learning its input, we corrupt the input;
thereby forcing the autoencoder to learn useful features (Section 2.5.5). In order to
reduce the corruption process, the neural network learns/captures the probabilistic
distribution of the input. We call this type of autoencoder, where the input has
been corrupted with noise added to it, denoising autoencoders.

The rule of thumb when designing a neural network is to start shallow and check
how the algorithm performs. If there are indications that the model is not learning
(e.g. the learning/loss curve does not improve as a function of epoch), then it is at
this point one adds more layers.

With this in mind, we started off with a simple denoising autoencoder. The
encoder consists of two convolutional and maxpooling layers. For each maxpooling
layer applied, the dimension of the output of the previous layer (i.e. the input of the
maxpooling layer) is reduced (see Figure 4.1). To bring back our reduced dimension
input back to its original size, we mirrored our encoder but this time using two
convolutional and upsampling layers.

There does not exist a predefined set of rules for knowing which hyperparameters
to use for a given model. It is therefore common practice to read current literature
about similar machine learning projects to get a ’ballpark’ idea of which to use.

The hyperparameters used for training were thus found via trial-and-error. We
found that the best set-up giving our training data set consisted of a mean squared
error loss/cost function (see Section 2.4.1) to assess model performance during train-
ing and validation. We used an Adam optimizer algorithm, which is an extension of
stochastic gradient descent, to iteratively update the network weights during train-
ing ([27]). Some of the attractive features of using the Adam optimizer include,
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Figure 4.1: Denoising autoencoder model architecture used for training. The left
portion (outlined in green on the top) depicts the encoder and the right portion
(outlined in orange on top) is the decoder. If trained to reconstruct its input reliably,
the coding (center dark blue block where the bottleneck occurs) is able to represent
the input but at a lower dimension.

but are not limited to it being: computationally efficient, has little memory require-
ments, and it can handle well problems with large data sets and/or parameters [27].
An outline of our set up can be seen in Figure 4.1.

Table 4.1: Model architecture of the denoising autoencoder. Conv = 1D convolution,
Max = maxpooling, UpS = upsampling.

Layer 1 2 3 4 5 6 7 8 9
Stage Conv Max Conv Max Conv UpS Conv Ups Conv

# Channel 8 - 16 - 16 - 8 - 1

4.4 Training

To train our regressor (Section 2.3.2), we gave as input our ’clean’ version, x, and
its associated corrupted/noisy version, x̃ (see Section 2.5.5). We split our data set
into two pieces: a training and validation set. 80% of the data we set aside for
training and the remaining 20% was set aside for validation. (Section 2.2.1) Thus
of the 13,000 pre-processed training examples, 2,600 waveforms were set aside for
validation and the remaining 10,400 were used for training. We used mini-batch
gradient descent with batch sizes of 200. Unlike a typical regressor or classifier (see
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Section 2.3.2) the output of our unsupervised will be continuous time-series arrays,
i.e. our denoised waveforms.

At the time of the execution, we had access to multi-core processors. Thus, the
training time was approximately 2.8 hours. We later obtained NVIDIA GPU access
from LRZ but we did not run our model to see how the performance time might
have improved.

4.4.1 Results from Training

A quick diagnostic tool to check if the machine learning algorithm is learning is to
refer to its learning (sometimes called loss) curves. Learning curves describe the
experience on the x-axis and learning (or improvement) on the y-axis (see Figure
4.2). A single epoch describes one full cycle of making predictions on the training
set. As a function of epoch we expect the loss (sometimes called ’cost’) to decrease
for both the data it is directly learning from (i.e. the training set) and the data set
used to validate it learning (i.e. the validation set). From these plots it is possible
to identify warning signs of overfitting, underfitting, underrepresented training set,
and underrepresented validation sets (see Section 2.2).

In Figure 4.2 we note that the loss curve decreases with epoch for both the
training and validation set. This suggests our algorithm is improving its ability to
reconstruct the waveforms corresponding to its corrupted input, x̃.

Figure 4.2: Loss curve computed during training from the denoising autoencoder.
Training was terminated when the model was no longer to improve its predictions
(i.e. loss value no longer decreases) around epoch 1,000.

The number of epochs chosen was done so as to minimize the likelihood of over-
fitting (see Section 2.4.2) which can happen if the neural network is allowed to run
for too long. There are a couple of visual indicators to determine if one is running



4.4 Training 29

into the risk of overfitting 2.4.2. In our case, the plateau of the curves at around
1,000 epochs was hint that the algorithm was no longer improving its predictions,
and thus was time for us to terminate the algorithm.

In the future, to automate the process of terminating learning based on the per-
formance of the learning curves, we will implement Early Stopping. Early Stopping
is a method that stops training once it is no longer improving its performance (e.g.
the loss curve no longer decreases) on the validation set. Doing so will help us reach
the model’s peak performance by helping us automatically avoid underfitting and
overfitting (see Section 2.4.2).

Note that in our case our validation error is smaller than our training error.
One would expect that the algorithm performs better at making predictions for the
training set since it is learning directly from it. This could be the result of our data
set not being shuffled. Currently there is an unequal distribution of CMB, PKD,
HUMO, and MNRC in the training and validation set. More specifically, the neural
network is being fed more stations from HUMO and MNRC, two stations that have
a lower SNR than CMB and PKD. Meaning the algorithm is systematically training
on data which has a less easily recoverable signal. If we then give it a data set with
better SNR, we can expect that the performance of the neural network to be better.
This is the current understanding of why the validation set loss is better than that
of the training.

To investigate the output of our neural network we started off by creating time-
frequency goodness-of-fit(GOF) comparisons as defined by [29]. The plots compare
the goodness-of-fit between two waveforms based on the time-frequency representa-
tion of the seismograms obtained as the continuous wavelet transform with the Ana-
lyzing Morlet transform. More specifically, the criteria established by Kristekova in-
cludes quantitative analysis of: time-frequency envelope (TFEG) and phase (TFPG)
goodness-of-fit, time-dependent envelope (TEG) and phase (TPG) goodness-of-fit,
frequency-dependent envelope (FEG) and phase (FPG) goodness-to-fit, in addition
to single-value and phase and envelope goodness-of-fit (PG and EG, respectively)
[29].

A select number of waveforms from our training set are seen in Figure 4.3 and
4.4. The black waveforms are the original pre-processed waveforms and the red
waveforms are the denoised waveform created by our denoiser autoencoder. Subplots
above the trace comparisons break apart the time-frequency envelope goodness-to-fit
as a function of frequency (labeled FEG, in the upper left of plots) and time (labeled
TEG, directly above the waveform). Similarly, subplots below the traces describe
the time-frequency phase goodness-to-fit as a function of frequency (labeled FPG,
in the lower left of plots) and time (labeled TPG, directly below the waveform).

We hope to see that the output of our neural network (here shown in red) is a
waveform that closely resembles the original clean (black waveforms). Said another
way, the goodness of fit between the black and red traces should be high (6.5 and
above for the single-valued one the GOF scale).

From Figure 4.4 we can see that the goodness-to-fit is exceptional; with single-
valued EG and PG values above 9.5. The top trace has some deterioration in the
TFEG starting around 50 seconds, with a dominant frequency of approximately
1Hz. The GOF values decrease to approximately 6.5. While the TPFG is nearly
unchanged throughout the record.

The bottom trace TFEG sees a decrease in goodness-of-fit from approximately
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Figure 4.3: [First of two] goodness-of-fit results of randomly selected waveform from
training set. Black waveform is the uncorrupted version (i.e. clean) version and the
red waveform is the denoised waveform made by the DAE transfer learning model.
Time axes is in seconds.

9.5 to 6 starting at the onset of the P-phase at around 30 seconds. The dominant
frequency between 2 - 4Hz. Once again the TFPG looks unchanged.

In Figure 4.5 we demonstrate the signal-to-noise ratio (SNR) of the original
traces x shown in pink, the corrupted (noisy) trace x̃ in yellow, and the denoised
waveform (the output of our DAE) in purple from the training set.

The overlap between the near overlap of SNR between the denoised and the
original clean waveform, suggests that the denoiser is able to recover the original
SNR. There was a loss in SNR for signals which originally had SNR values above
25Hz. However, there was an increase in the number of events with SNR values
between 10-20Hz as can be seen with the higher denoised bin heights.

In the future, it would be insightful to investigate if our denoiser is still able to
recover the original SNR when the difference between the clean and its associated
version are larger (the yellow bins shifted to the left and the pink bins shifted to the
right, for example). This is something we wish to explore in future iterations.

The envelope goodness-of-fit plots provide insight into how similar the denoised
traces from our DAE are. However, we do not get a sense of what, if any, part
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Figure 4.4: [Second of two] goodness-of-fit results of randomly selected waveform
from training set. Black waveform is the uncorrupted version (i.e. clean) version
and the red waveform is the denoised waveform made by the DAE transfer learning
model. Time axes is in seconds.

of the physics which generated our waveforms is preserved. There are two metrics
which can be used to investigate this: comparing changes in peak amplitude and
phase arrival times. Unfortunately, we had to toss out looking into peak amplitude
changes because during pre-processing we normalized our waveforms. This left us
with changes in arrival times. We will do a quantitative analysis of how the DAE
effects phase arrivals when we look at the results of the test set in the next section.
The reason being, the test set tells us whether or not our deep neural network
actually learned.

4.5 Test Set

The results from our model suggest the denoiser is recovering the SNR of the training
data set and preserving arrival times. The results from training only tell us about
the insample error (see Section 2.2). To determine if we have truly learned we need
to look at the out-of-sample error.

If the entire input-output space χ and the entire output space Y are the set
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Figure 4.5: Histogram of the signal-to-noise ratio of the original/clean waveform
(shown here in pink), the noisy/corrupted version (yellow), and the denoised version
from our DAE (purple) from training.

of all possible inputs, x, and the set of all possible outputs, y, respectively, then
we can define our data set as the space D which consists of input-output pairs
(x1, y1), (x2, y2), ..., (xn, yn) for n = 1, 2, ..., N [3].

During training the neural network is attempting to find the best approximation
to an unknown function f known as the target function (see Section 2.1.2) using
algorithms which are directly learning from the data set, D. The target function is
a function of the entire input space χ and the output space Y . The approximating
function, g, is based only a subset of the entire input-output space, D. Thus, despite
the outputs of the initial training, one can not asses whether or not the ML algorithm
has learned the true target function since it is only referring to a subset of the entire
input-output space χ during training.

To find out if the ML algorithm can infer outside the data set it trained on, the
algorithm is run on a data set it has never seen before. This data set is known as the
test set. The test set consists of instances which are outside of our data set D. If
our trained neural network is able to make accurate predictions on data it has never
seen before, then we can interpret this as a means of determining the neural network
has learned. Said another way, the approximating function has found weights that
can fit the observations found during training but are not too specific such that it
can not generalize to data it has not seen before.

For our test set we used one year of data from the NCEDC with the same
querying criteria as the training data set (i.e. we searched for local events with
minimum magnitude of 3.0). Data was collected from the same stations used for
training: CMB, PKD, HUMO, and MNRC. With the above criteria, we were able
to download approximately 1,000 waveforms.

The same pre-processing was done for the test set as was done for the training set.
Each component of each record (Z, N, E) was treated as a separate training example,
giving us ∼3,000 waveforms. Waveforms were detrended, high-passed filtered with
a maximum frequency of 0.5Hz, normalized, decimated to 20Hz sampling rate, and
then cut into 90-second records. Running the model took less than 1 minute to run.
Results are discussed in the next section.
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4.5.1 Results from Test Set

From Figure 4.6 we note that the envelope and phase goodness-to-fit for the wave-
forms is exceptional, with single-valued GOF criteria above 8.0. Once again in black,
we have the original uncorrupted input and in red we have its denoised version which
is the output of our DAE. A decrease in the TFEG from approximately 9.5 to 7.0
around the onset of the surface waves at around 45 seconds can be seen as well.
The phase content (bottom figures) show near-perfect fit with minimal degradation
around 50 seconds.

There is a similar, though less pronounced, degradation for the waveform in
Figure 4.7. Fluctuations between approximately 9.4 and 7.5 for the phase goodness-
of-fit can be seen through the entire length of the TFEG and TFPG plots. There
does not seem to be a general trend in how the phase fluctuates as a function of
time. In this case, the largest contrast in GOF happens around the 70-second mark.
The time-frequency phase GOF is nearly perfect. It would seem that in both cases
that the goodness-of-fit for both waveforms is most noticeable during the arrival of
the surface waves.

Based on the test set GOF plots it would seem that the neural network is not
yet able to recover the peak amplitudes perfectly. It would be useful to quantify the
changes in peak amplitude between the original waveform and the denoised wave-
form. However, as mentioned above, we normalized our data during pre-processing
so such a comparison would not provide much insight.

In Figure 4.8 we plot the histogram of SNR for the clean, noisy, and denoised
waveforms as we did with the training set. The histogram suggests the DAE was
able to recover the original SNR of the non-corrupted waveforms (i.e. the clean
version). The number of events with SNR between 10 and 20dB increased relative
to the clean and corrupted waveforms. However, we did decrease in SNR for events
which originally had SNR values between 25 to 35dB.

As mentioned in Section 4.4.1 when we were analyzing the results from training,
the goodness-of-fit plots and the SNR histograms provide an insight on how well the
denoising autoencoder is at recreating the waveforms (GOF) and how well it can
recover the SNR. However, such analysis does not tell us if the underlying physics
which generated a given waveform were preserved. Information about changes in
peak amplitude must be tossed out as waveforms were normalized. This leaves us
with analyzing the influence the DAE had on phase arrivals.

To investigate this, we computed short-term average/long-term average (STA/LTA)
trigger algorithm to pick P-phases for all three versions of our data: the original clean
version (x), the denoised version (x̃), and the denoised version. Using the STA/LTA
derived P-phases, we computed the time differences between each combination of
traces: clean vs. noisy, noisy vs. denoised, and clean vs. denoised. The results,
as a function of the SNR before using the DAE and after are plotted in Figure
4.9. We used a least-square polynomial of degree equal to one to describe the linear
trend of the differential times. The figure demonstrates that the difference in phase
picks errors between each combination of waveform is preserved as a function of
the original SNR and the SNR after denoising. This can be seen by observing that
the overall linear trend looks the same for both figures. We do note that the SNR
after denoising (left figure) has a systematic increase in slope for all three curves.
However, the change is less than a one second difference for all three curves.

Results from the DAE on the test set suggest it can recover the SNR of the
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Figure 4.6: Goodness-of-fit plot of denoised (red) and original (black) waveform
from data set the neural network has never seen before. Time axes is in seconds.
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Figure 4.7: Same as the previous GOF plot but for a different randomly chosen
waveform from the data set the DAE has never seen before. The denoised output
of the neural network is in red and the original waveform is black. Time axes is in
seconds.
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Figure 4.8: Histogram of the signal-to-noise ratio of the original/clean waveform
(shown here in pink), the noisy/corrupted version (yellow), and the denoised version
from our DAE (purple) using the pre-trained model on the test set.

original clean waveforms. Given that the model was trained on less than 15,000
waveforms (which is considered small data set in the context of deep learning) and
considering a simple DAE (only a couple of alternating convolutional and maxpool-
ing layers were used), gives us reason to believe we will be able to improve our model
such that it could one day improve the SNR of data sets.

4.6 Transfer Learning

The denoising autoencoder demonstrated it can: recreate the original waveform
with GOF above 8.0 (out of a scale of 10), recover the SNR, and it preserves phase
arrivals using an automated trigger algorithm. There are several routes that will
be explored improve the DAE’s performance. However, given the promising results
thus far, we were curious to see how the current model performs on data recorded in
Wettzell, Germany. This method of using a trained neural network on a different,
but similar data set, is known as transfer learning. Transfer learning is a technique
that can be used in the case where this not enough data to initially train with.

There are two strategies to apply the transfer learning technique using deep
neural networks: via feature extraction or fine-tuning. In our case we will use feature
extraction. Because we want to exploit the weighted layers in our pre-trained neural
network model to extract features in new samples [2].

4.6.1 Model

As of writing this thesis, there does not seem to be a ‘best practice’ of how to reuse a
pre-trained autoencoder within the Machine Learning community. Generally speak-
ing, transfer learning requires ’freezing’ part of a neural network during training. In
the case of convolutional neural networks (See Section 2.5.4) the shallow portion of
the network is kept constant [10]. The first few layers of a traditional convolutional
neural network can be regarded as ‘general feature extractors’ which can be reused
on similar, but different data sets [16]. During transfer learning we want to prevent
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Figure 4.9: Arrival time differences (in seconds) of P-phase arrivals computed by
the STA/LTA trigger algorithm. A degree one least-squares polynomial was used to
fit the data.

these weights from being updated, else we will lose the features they learned and
which we want to exploit for transfer learning.

Table 4.2: Model architecture of the tranfer learning denoising autoencoder. Conv
= 1D convolution, Max = maxpooling, UpS = upsampling, * = new layer.

Layer 1 2 3 4 5 6 7 8 9
Stage Conv Max Conv Max Conv* UpS* Conv* Ups* Conv*

# Channel 8 - 16 - 16 - 8 - 1

The denoising autoencoder can be viewed as a convolutional neural network
with symmetry around the coding. Thus, the most intuitive approach to applying
transfer learning was to keep the encoder (the two first convolutional layers and the
maxpooling layers) fixed during and give it a new decoder (see Figure 4.2).

4.6.2 Data Set

We queried teleseismic events with magnitude 6 and above. From this search we
were able to find approximately 780 events. Each channel (Z, N, E) recording was
treated as a unique training example, giving us approximately 2,300 events to work
with. Events were low-passed filtered at 0.1Hz, normalized, and cut into 90-second
records starting 30 seconds before the P-arrival. Archived Wettzell data does not
have manually picked phase arrivals, so we computed theoretical P and S phase
arrivals using the IASP91 1D velocity model using ObsPy’s built-in TauPy instance
class. TauPy is based on Java TauP Toolkit by [12] and can be used to calculate
theoretical arrival times based on a 1D spherically symmetric background model.
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We once again downloaded data between archived events and considered this as
pure noise. We added the noise to our pre-processed data set giving us two versions:
a noisy and clean version. The noisy waveform, x̃T , and its associated original clean
version, xT , are the input and label to our denoiser autoencoder, respectively.

4.6.3 Training

Figure 4.10: Learning curve of transfer learning model using teleseismic events from
Wettzell. The algorithm is unable to improve its prediction around epoch 140.

Of the 2,300 events, approximately 1,870 events were kept for training sin460
events were set aside as our validation set. With the exception of the number of
epochs, the same hyperparameters used for the original model were kept the same
for our transfer learning model.

4.6.4 Results from Transfer Learning Training

Detail analysis of the results from transfer learning still needs to be investigated be-
fore conclusions can be drawn. As such, we will provide early results from this model.
Starting with the loss curves computed during training, Figure 4.10 demonstrates
that that machine learning algorithm is improving its predictions with experience.
Train-ing was terminated after 150 epochs when both the training and loss curves
were no longer improving its learning performance as a function of epoch. At this
point, the transfer learning model is reaching a loss score (value) of approximately
0.04. The loss score of the transfer learning model at its time of termination is higher
than the final loss score for the training model which had a value of 0.002. Suggest-
ing the transfer learning model is unable to denoise the waveforms as effectively as
the original model.
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Figure 4.11: Comparison of the original waveform (black), its corrupted version
(red), and the output of our denoiser deep neural network (purple) from the data
set used to traing the transfer learning model.

In order to improve the DAE’s performance given its current architecture (Figure
4.2) we might need to either: a) use a more complex model during the original
training on the California data set or b) use more and diverse data to learn from.

In Figure 4.11 we compare a randomly selected waveform of the data set used
for the transfer learning model. In black is the original uncorrupted waveform, x,
in red is its associated corrupted version, x̃, and in purple is the denoised version.
Visually inspecting the two waveforms we can see the phase and amplitude of the
noisy version in the top plot begins to deviate beginning at around 40 seconds. The
denoised version, though it has phase and amplitude characteristics closer to that of
the clean version, is not perfect. We can confirm this with the goodness-fit-plot in
Figure 4.12. Both the TFEG and TFPG witnesses a degradation from GOF values of
approximately 9.5 to 6.8 starting around 40 seconds. The time-dependent envelope
(TEG) highlights this and we can see the largest contrast around 60 seconds. This
suggests that, once again, our DAE struggles most at preserving the peak amplitude
relative to the rest of the waveform.

With much left to explore with the original model, the results presented here
provide only a glimpse of what transfer learning can do for the Wettzell. It remains
to be seen if, once we have a robust model, if we can effectively apply transfer
learning. We discuss the next steps in store for the transfer learning model in the
next section.

4.7 Discussion & Further Work

There are several items we would like to investigate in order to improve our neural
network. As a start, we will increase the training data set to include all data retrieved
from 1999. At the moment we limited ourselves to using only five years worth of
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Figure 4.12: Goodness-of-fit of the waveform shown above. The black waveform is
the uncorrupted version (i.e. clean) version and the red waveform is the denoised
waveform made by the DAE transfer learning model. Time axes is in seconds.

data. This was done to minimize computational time and storage space while we
were in the development stage of building and testing different model architectures.
Including more data will increase the diversity of the domain space from which our
machine learning algorithm can learn from. Thus, improving its ability to denoise
future waveforms it has never seen before.

To expand our data set, we plan to vary the noise level added during pre-
processing. This is a form of data augmentation and it is a strategy used by practi-
tioners to increase the diversity of the data available for training without collecting
new data [8].

As discussed in Section (4.4.1), we need to shuffle our data set. Shuffling data
sets is a pre-processing technique done to ensure that a bias isn’t introduced during
training. In other words, for each training epoch the machine learning algorithm
is grabbing a distribution that is representative of the entire data set, D. This is
currently not the case for our data set. Currently, we have data being read in where
stations CMB and PKD make up most of the validation set and stations MNRC
and HUMO make up the training set. CMB and PKD typically have higher SNR
thatn MNRC and HUMO, thus it makes intuitive sense that the machine learning
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algorithm is able to make recreated these less noisy stations in the validation set
than in the training set.

Once the above steps have been satisfied we plan to apply transfer learning on
teleseismic events recorded by the same California stations used for training (PKD,
CMB, HUMO, and MNRC). Given that we are using four stations (instead of just
the one in Wettzell) there will be more teleseismic data to train with. In addition, the
corruption process, in this case the noise characteristics of the CA stations, will be
the same during training. Right now our machine learning algorithm is confronted
with both: new seismogram characteristics (teleseismic as opposed to local) and
different corruption process (noise in CA versus noise in Germany). Having been
exposed to teleseismic events during training, our neural network might perform
better on the Wettzell data set.

We are interested in exploring how our denoiser performs if, instead of using
1D time-series data, that we instead use 2D time-frequency domain images. The
inputs of our neural network would therefore consist of both the real and imaginary
parts of the time-frequency coefficients. Its associated label would then consist
of a corrupted version of these time-frequency coefficients. Using 2D images and
two inputs per training example, xi, might allow the model to make more complex
outputs. This would require using 2D convolutional layers, 2D kernels, and perhaps
more fully-connected feed-forward networks. In doing so we could compare which
model is better in denoising our data.

Given that there are other groups [52] [35] [50] looking into using machine learn-
ing algorithms for denoising, it might be worthwhile to conduct a comprehensive
study comparison. In particular, it might be of interest to compare computational
resources used for pre-processing and training. For example, Zhu et. al used con-
volutional neural networks (the basic of our autoencoder) for their DeepNoiser.
Their pre-processing included converting time-series data into the frequency do-
main. Where they then gave the neural network the real and imaginary parts of
time-frequency coefficients.[52] In our current set-up did minimal pre-processing by
leaving our data set in the time-domain and directly feeding it the neural network.

Finally, given that our current machine learning workflow removes amplitude
information during pre-processing, it is of interest to have a model that works with
unnormalized data. We chose to work with normalized data because we wanted to
start off with a simple neural network; we wanted to create a neural network with
minimal features to learn. The range of peak amplitude values in our data set might
have required we use more hidden layers and thus required more data to learn from.

4.8 Conclusion

Multiple disciplines depend on seismic data to explore open questions and gain
insight about Earth. Having a high signal-to-noise ratio is critical given the critical
role seismic data plays in the geophysical community. There have, and will continue,
to be different approaches to improving the SNR in seismic data. The goal of this
Master Thesis was to develop a new approach to denoising seismic data using Deep
Neural Networks.

To investigate this we trained a denoising autoencoder, a type of deep neural
network architecture which uses a combination of convolutional neural networks,
maxpooling, and upsampling layers to first reduce then rebuild the dimension of a
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given input. In doing so it forces the neural network to learn which features are
critical in representing the input (but at a lower dimension). The given process
inherently denoises corrupted inputs when its associated input-pair is uncorrupted.

We were originally set out to create a denoiser for the inertial sensor in Wettzell,
Germany. However, given the limited number of events we could use for training
we decided to first train on local seismic events recorded by stations part of the
Northern California Earthquake Data Center (NCEDC).

Several model architectures and hyperparameters where tested before we settled
on a configuration that looked most promising. With this model we were able to
train a DAE to denoise waveforms.

With results looking promising, we then tested waters and applied transfer learn-
ing on teleseismic data from Wettzell. Results at this point are preliminary, but
the current outcome looks like our denoising autoencoder is on track to denoising
Wettzell data.

The current model is capable of recovering the SNR of waveforms it has never
seen before. Given the current results and the list of tasks which we have in store
for this model, we are optimistic we will be able to reach a point where our DAE
will be able to improve the SNR of waveforms.
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Chapter 5

S-Wave Phase Detection on
Rotational Seismic Data

5.1 Introduction

The growing excitement behind single station 6 degree-of-freedom (three transla-
tional and three rotational) observations is well justified. Improved instrument sen-
sitivity within the last two decades has fueled efforts in exploiting the theoretical
framework that allows the reconstruction of the complete motion of a measurement
[5].

Adding a single rotational measurement has been shown to improve the determi-
nation of earthquake locations [20]. In part because rotational measurements have
been shown to narrow the degree of azimuth uncertainty and can separate S-phases
[13].

In theory it is possible to locate earthquake sources using a single translational
seismometer. To do so one uses the P-wave polarization to infer the azimuth to the
epicenter. To do so, one can use the P-wave ratio of the two horizontal components of
a translational record to find the vector projection of the P-wave along the azimuth
to the source. The source distance itself is found taking the travel time difference
between the P- and S-wave. With the distance known, one can then approximate
the P travel time and thus find an origin time. However, this simplistic approach
is not accurate for distances greater than 20 degrees. A distance greater than 20
degrees make it difficult to identify the P-wave arrival on the horizontal components.

Because of the limitation the above method introduces, several groups have pro-
posed alternative methodologies [46] [39] [34]. Most of the proposed approaches are
computationally heavy and require a heavy amount of pre-processing because of the
statistical framework from which they operate on [9].

The above-mentioned limitations of using a single three-component translational
sensor in locating earthquakes, interest in 6 Dof and 4 Dof (three translational
and one rotational component) has grown. Additionally, the necessity to exploit
rotational data has gained new traction as with the successful deployment of

While the theoretical and instrumental framework to take full advantage of 4Dof
and 6Dof is developing, there are still hurdles to face. Noise, contaminated trans-
lational data by the rotational component, features unique to rotational not yet
well-understood (among other things) complicate identifying phases and the back
azimuth.
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This is where Machine Learning can help. Machine Learning is a branch of
artificial intelligence based on the idea that systems can learn directly from data,
identify patterns, and make decisions with minimal human intervention. It is a
method of data analysis that could bring new insight to the difficulties facing 6Dof
data.

To break the larger list of challenges currently facing 6Dof data, we will first
focus on developing a machine learning algorithm capable of accurately picking S-
Phases using 4Dof data. To do so we will train an Artificial Neural Network to pick
S-Phases.

This paper is structured as follows: first, we will invoke inspiration by describing
observations using 4Dof has had on improving earthquake location. In the same
section, we will take a look into the current state of machine algorithms used for
phase picking and detection. Next, we will look into our machine-learning workflow.
We will then discuss the results from training and our test set (see Section 2.2.1)
before taking a quick preview into the results from transfer learning (Section 5.5).
We will end by going over the next steps in store for our algorithm which will
allow us to fully explore what role Machine Learning can bring to 4Dof and 6Dof
observations.

5.2 Background

5.2.1 Earthquake Location using Rotational Data

In order to determine the source location of an event one must accurately identify
seismic phases, measure their arrival times, and have knowledge of the velocity
structure between the seismic station and the hypocenter [31]. Knowledge of the
back azimuth determines the longitudinal and transverse direction of the incoming
array (relative to the station).

The classical approach of identifying S-phase arrivals measured by inertial sensors
involves a careful analysis of the radial and transverse (rotated horizontal N-S and
E-W) components of the record. This is done because the particle motion of SKS
and SKKS waves are primarily SV in nature and thus most present on the radial
component. The Sdiff is characterized as a SH wave and can be most present on
the transverse component [42]. In practice, identifying the S-phase is challenging
because, depending on the source distance, the signal may be convoluted by: the
P-coda, reflections from previous-arriving phases, and microseisms (i.e. noise).

Taking advantage of rotational data can aid in this endeavor. Heiner et. al
(2007) showed that there exists a high cross-correlation (near 1.0) between transverse
translation and vertical rotation for the S-wave onset (as well as Love waves). With
this, the ambiguity of S-Phase picking can be reduced and thus subsequently aid in
more accurate in determination of locating sources.

Assuming plane wave propagation (Eq. 3.18) we expect the vertical rotation and
transverse velocity seismograms to: have identical waveforms and that their ampli-
tudes are proportional to twice the phases velocity. As a result of the similarity of
the transverse velocity and vertical rotation one can investigate the source direction
of SH-type motions. [17] [11] [21] [22] found that rotating the transverse component
of a translational seismic record, until it reaches a maximum resemblance to the
rotational measurement, corresponds to the back azimuth of the event. [13] showed
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that computing back azimuths with rotations can reduce the back azimuth error to
less than 10 degrees. This is in contrast to [9] which had errors on the order of 30
degrees in addition to the 180 degree ambiguity [13]. The combined improvement
of S-Phase detection (and thus arrival times) and back azimuth estimations using a
single rotational measurement, can thus lead to improved source locations.

Applying theory to all real observations has proven nontrivial. First, transla-
tional observations are contaminated by rotations. There is a geometric effect that
comes into play with horizontal components of strong motion and long-period ob-
servations. In particular, these observations are sensitive to tilt. It is theoretical
possible to correct this effect by using the measured seismometer tilt, however, this
has yet to be fully successful [20] [21].

In addition to contamination by the translational components, rotational mea-
surements (like standard inertial sensors) are susceptible to noise. Rotation sensors
still can still not achieve similar signal-to-noise ratios as standard inertial (transla-
tional) broadband sesimometers [22].

Given the challenges that face 6Dof, and thus 4Dof observations, we are looking
into whether machine learning can provide new insight. The focus of this master
thesis is to develop a machine learning algorithm which can accurately pick S-Phases
using 4Dof data.

5.2.2 Deep Neural Networks & Phase Picking

There are numerous neural network architectures to choose from. Of interest to us
are Convolutional neural networks 2.5.4. Convolutional neural networks (CNN and
sometimes refers as ConvNets) are powerful feature detectors which are immensely
popular in the field of computer vision, natural language processing, and image
analysis and classification. The design of a CNN was inspired to mimic that of
the hierarchical organization of human eye-sight. The first features detected by
our neurons are simple patterns such as circular shapes. On top of these cells are
neurons which can then detect edges. Moving deeper into more complicated cells,
the neurons begin to combine detected lower feature levels and combine them into
one complicated image.

As of writing this paper, there are several working groups exploring Convolu-
tional Neural Networks for phase picking and detection. [36] used three-component
translational seismic waveforms to train their neural network to generate probability
distributions of P arrivals, S arrivals, and noise as output. [51] used three-component
translational seismic waveforms to train their neural network to generate probabil-
ity distributions of P arrivals, S arrivals, and noise as output. Their CNN, named
’PhaseNet’, is demonstrating it can achieve higher picking accuracy and recall rate
than current statistical and automated phase picking method [51]. Using the vast,
hand-labeled data archives of the Southern California Seismic Network were able
to train a ConvNet to detect and classify seismic body wave phases over a broad
range of waveform types (e.g. local vs. teleseismic events). Their generalized phase
detector framework could improve seismicity catalogs with detection sensitivities
comparable to template matching catalogs, but without their inherent biases [37].

Given the promise of convolutional neural networks in phase picking and detec-
tion, we chose this as our model architecture of choice.
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5.3 Methodology

5.3.1 Software

Open-source software and free data available to the public were used for the exe-
cution of this Thesis. The list of open-source machine learning libraries for use is
constantly expanding, as is the ‘crowd favorite’. We used the open-source Keras
Python Deep Learning library API [26]. It currently has one of the largest commu-
nity support, fastest-growing, and most scholarly cited (among other criteria)[47].
Keras is user-friendly, modular, extensible, and there are a plethora of tutorials
online to learn from. The heavy-lifting tensor multiplication and convolutional op-
erations are done with TensorFlow. TensorFlow is another open-source software
that performs its computations with an optimized C++ backend.

5.3.2 Data Set

Our goal was to train our CNN using four-component data from Wettzell, Germany;
the vertical rotation rate from the G-Ring and the translational three-component
collocated STS-2 broadband sensor. In order to have a clear separation of the P- and
S-arrival, we queried the German Regional Seismic Network (GRSN) for teleseismic
event with minimum magnitude of 6.0 and above.

However, at the time of our search we were only able to retrieve 250 teleseismic
events from 2009 - present day. Events were chosen from 2009 and later because the
signal-to-noise ratio was improved by a factor of three [22].

Even with data augmentation, a technique that artificially expands the diversity
of one’s data set without collecting new data, would not create enough data to train
with. There is no set precedence of how much data one should have in order to train
a machine learning algorithm. Some postulated that one would have about ten times
as many training examples as one would have parameters to train[3]. Based on the
work done by [36] [51] [37] we wish to eventually work with +40,000 unique station
recordings.

Instead, we turned our attention to using synthetic waveforms generated us-
ing InstaSeis [23]. Instaseis calculates broadband seismograms from a database of
Green’s functions. The databases are generated by AxiSEM (axisymmetric spec-
tral element method) and given by a Python interface for convenient extraction of
seismograms [14]. For our synthetics we used the IASP91 model which has a 2-100
second resolution.

5.3.3 Preprocessing

Each four-component record was low-passed filtered at 0.1Hz and normalized. Keep-
ing in mind we want to use data collected from Wettzell in the future, our synthet-
ics were resampled to 20Hz thus mimicking the same sampling rate. The one-hour
records were trimmed to 60-second records, centered around the computed S-arrival
which were computed using theoretical arrival times from the IASP91 1D velocity
model using ObsPy’s built-in TauPy instance class. TauPy is based on Java TauP
Toolkit by Crotwell et. al. [12] and can be used to calculate theoretical arrival times
based on a 1D spherically symmetric background model. Records were trimmed for



5.3 Methodology 47

two reasons: we wanted to restrict the input length of our training data and reduce
the storage space of our data set.

By limiting the window length we reduced the number of parameters (see Section
2.5.4) our algorithm needed to learn. In doing so we reduced the size, complexity,
and thus the number of training examples our algorithm needs. In our case, limiting
the window size to a one-minute record reduced our input size by a factor of four,
from a 7200npts to 1800npts input array. The window size of 60 seconds was chosen
to give a buffer from theoretical arrival times.

To more closely resemble real seismic data we added noise to the vertical rota-
tional component in our four-component records. The noise was found by searching
through the Wettzell earthquake catalog with a minimum magnitude of 4.5 within
the last decade. Data between cataloged events were downloaded and then added
to the rotational component of our synthetic records. In the future we plan to add
real noise to all components (see Section 5.6).

5.3.4 Model

Our model is based on a scaled-down version of the Generalized Phase Picker by [36]
(Figure 5.1). For their model they used a convolutional neural network. CNN are
a type of neural network architecture designed to handle grid-like structured input,
such as time-series data (see Section 2.5.4). As the name suggests, convolutional
neural networks perform convolutions instead of standard tensor multiplication.

Figure 5.1: Convolutional neural network set-up used for training on synthetic 4Dof
data. The highlighted portion in green depicts the convolutional base. The non-
highlighted portion (i.e. white) describe a general fully-connected neural network.

The rule of thumb when designing a neural network is to first start shallow, i.e.
with a minimal number of layers. If there are indications that the model is not
learning (e.g. the learning/loss curve does not improve as a function of epoch), then
it is at this point one adds more layers. For our setup we used four alternating
convolutional and maxpooling layers (see Section 2.5.4). During training the convo-
lution layer performs a dot product using a kernel (the element which is performing
the convolution) and the incoming input layer. The output is then a feature map,
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which are equivalent to weights in a standard feed-forward fully-connected network
(see Section 2.5.1). During training, the neural network is updating these feature
maps. For each maxpooling layer applied, the dimension of the incoming input (i.e.
the output of the previous CNN layer) is reduced by the chosen filter size.

The output of our convolutional and maxpooling layers are then fed to a fully-
connected feed-forward network with batch normalization (see Table 5.1 and Section
2.5.4 for model summary). The feed-forward takes our extracted features learned
from the CNN and uses this to output an S-pick pick.

The hyperparameters (parameters not updated or changed during training and
are specified at the time of compilation) chosen were found via trial and error. This is
done because there does not exist an algorithm for knowing which hyperparameters
will work best during training. However, there are some hyperparameters (e.g.
which cost function used) which should be avoided depending on the objective of
our model (see Section 2.4.1). It is also common practice to read current literature
about similar successful machine learning projects to help narrow the field of options.

The hidden layers used rectified linear unit (ReLU) activation functions (see
Section 2.5.2). ReLU activation functions are a popular choice for deep neural net-
works because they can be combined to create nonlinear functions, thus allowing us
to model more complicated target functions (see Section 2.5.2). In addition, because
ReLUs will can print out 0 (2.9), they can lead to sparse neural networks and thus
reducing computation time for both the forward and backward pass. The final layer
(i.e. the output) was defined by a linear activation function. A mean squared error
loss/cost function (see Section 2.4.1) was used to assess model performance during
training and validation. We used an Adam optimizer algorithm, which is an exten-
sion of stochastic gradient descent, to iteratively update our network weights during
training. Some of the attractive features of using the Adam optimizer include, but
are not limited to it being: computationally efficient, minimal memory requirements,
and it can handle well problems with large data sets and/or parameters [27].

Table 5.1: Model architecture of the S-phase picker. Conv = 1D convolution, Max
= maxpooling layer, FB = fully-connect layer and batch normalization, F = fully-
connected layer

Layer 1 2 3 4 5 6 7
Stage Conv Max Conv Max FL FB F

# Channel 8 2 16 2 - 8 1

5.4 Training

To train the CNN we gave our pre-processed four-component data as input, x,
and its associated s-phase pick as its label, y (See Section 2.3.1 on supervised vs.
unsupervised training). Data was fed into the neural network in batches of 200
training instances.

The data set was split into a training and validation set. 80% of the data was
set aside for training and the remaining 20% was used for validation (Section 2.2.1.

The training time for our simple neural network took on average between 8 to
20 minutes. (Depending on the number of epochs used, cost function used, etc.).
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The output of our regressor (Section 2.3.2) for a given input, xi, is an s-phase
pick prediction made by the machine learning algorithm. For each epoch (i.e. a
single cycle through the entire training set) the machine learning is trying to find
the relevant features in the four-component waveforms necessary to identify the
S-pick.

5.4.1 Results from Training

A quick diagnostic tool to evaluate whether or not the machine learning algorithm is
learning is to look at learning curves. Learning curves describe the experience on the
x-axis and learning (or improvement) on the y-axis (Figure 5.2). An epoch describes
one full cycle of making predictions on the training set. As a function of epoch we
expect the loss (sometimes called ’cost’) to decrease for both the data it is directly
learning from (i.e. the training set) and the data set used to validate it learning
(i.e. the validation set). From these plots it is possible to identify warning signs
of overfitting, underfitting, an underrepresented training set and underrepresented
validation sets (see Section 2.2).

Our training results demonstrate that indeed, our machine learning algorithm is
learning given that the loss (i.e. the error in prediction) is decreasing with epoch.
The red curve describes the model’s performance on the training data while the
blue curve shows the model’s performance on the hold-out set, i.e. the validation
set. During training the machine learning algorithm is checking how good/bad it is
at making predictions (in our case, S-phase picks) compared to the true value (the
S-phase it was given).

We terminated training once the loss value of our algorithm stopped decreasing.
At this point the machine learning algorithm is no longer able to improve its pre-
diction capabilities. Letting the neural network to continue running could lead to
overfitting (see Section 2.4.2).

The fact that the loss and validation curves are nearly identical suggests that
the machine learning algorithm is performing equally as bad (or good, depending
on your point of view) in making predictions on both data sets. Which makes sense
given that our synthetic waveforms probably do not exhibit much diversity given
that events were generated using a pseudo-random Python function. Thus, there is
a chance we had repeated seed values in our code which could have lead to repeated
events in our data set.

In Figure 5.3 we compare the theoretical (blue vertical line) pick and the pick
made by the convolutional neural network (purple vertical line). Note that the picks
are virtually identical and difficult to differentiate when plotted together. Quanti-
fying the arrival time differences (Figure 5.4) we can see that our machine learning
algorithm is accurate in picking the S-phase arrival to within less than a second.

The results from training suggest that our convolutional neural network is learn-
ing how to pick S-phases from our 4Dof synthetic data. And it is doing with less
than 0.5-second error. To confirm the neural network has truly learned we need to
check the accuracy of the model after it has been given data it has never seen before,
the test set. Doing so will help confirm that the weights found during training are
fitted well to model the target function describing the data set it was given (training
data set), but general enough that it can make predictions on data it has never seen
before.
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Figure 5.2: Loss (learning) curve using a mean squared error loss function during
training on 4Dof synthetic waveforms. Zoomed-in plot displayed (upper right) to
show the nearly identical behavior of both curves.

The fact that the validation and training curve looks nearly identical, this would
suggest that our data set might be too similar. As mentioned above it could be that
we have repeated events. With this in mind, we did not formally use a test set to
validate the results from training. This will be done after we have created a larger
and more unique data set.

Aside from confirming our training data set can generalize, training our model on
a larger and more diverse data will provide an opportunity to model more complex
approximation functions (see Section 2.1.2). This might prove useful if we one day
want to migrate our model from making predictions on purely synthetic data to real
data recorded from Wettzell.

5.5 Transfer Learning on Wettzell Recordings

Given the above results, we were encouraged to use our convolutional neural net-
work, which was trained using synthetic data, on teleseismic events recording by
the G-Ring laser and the collocated STS-2 broadband seismomter at the Wettzell
Observatory in South-East Germany.

To use our pre-trained model we applied a technique known as Transfer Learn-
ing. The idea is to use a trained neural network (the fine-tuned weights, features
extracted, etc.) on a statistically different, but similar data set. We want to exploit
what has been learning on using the larger synthetic data set to help generalization
in a different data set (see Section 2.2).

Transfer Learning is a technique that can be used in the case where this not
enough data to initially train with. For example, one could use a neural network to
classify images of bears first, then reuse part of this pre-trained neural network on
classifying images of cars.
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There are two strategies to apply the transfer learning technique using deep
neural networks: via feature extraction or fine-tuning. In our case we will use feature
extraction because we want to exploit the weighted layers in our pre-trained neural
network model to extract features in new samples [2].

5.5.1 Model

To reuse our pre-trained neural network’s weighted layers, we ’froze’ the convo-
lutional base (Figure 5.2) and introduced a new, untrained, fully-connected feed-
forward network.

In the case of convolutional neural networks the shallow portion of the network
(i.e. convolutional base) are kept constant [10]. These first few layers can be regarded
as ‘general feature extractors’ [16]. In other words, we prevent the weights in part of
our model from being updated during training to ensure the features/representations
learned during the original training are not lost or ’erased’ during training [4].

With exception to the number of epochs, the same hyperparameters used for the
initial model trained on synthetics were used for the transfer learning model. During
training the feed-forward, densely connected neural network (i.e. the portion of the
network not including the input layer and convolutional base) uses the features ex-
tracted from the previous model to make predictions on the new data set. The hope
is that the features in the synthetic waveforms which allowed the neural network to
make accurate S-phase picks, are similar enough to Wettzell data thus allowing the
transfer learning model to make accurate S-phase picks.

Table 5.2: Transfer learning model architecture of the S-phase picker. Conv = 1D
convolution, Max = maxpooling, FB = fully-connect and batch normalization, F =
fully-connected, * = new layer.

Layer 1 2 3 4 5 6 7
Stage Conv Max Conv Max* FL* FB* F*

# Channel 8 2 16 2 - 8 1

5.5.2 Data Set

We downloaded events with a minimum magnitude of 6.0 from the rotational G-
Ring laser and the collocated STS-broadband sensor at Wettzell (thus, 4-component
data consisting of the vertical rotational component and the translational three-
component data). From this we were able to retrieve roughly 830 events.

The same pre-processing done on the synthetics was done for Wettzell Data.
Each four-component was first low-passed filtered at 0.1Hz and normalized. We
then trimmed our one hour records to 60 second records. Records were once again
centered around the computed S-arrival.

At the present moment we avoided manually picking S-Phase arrivals by cal-
culating theoretical arrival times based on a 1D spherically symmetric background
and the IASP91 1D velocity model. This is only an approximation, however, so it
is prone to errors. Thus, it might be worthwhile in the future to manually pick this
data set.
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The data set was once again split 80:20; 80% of the data was reserved for training
and 20% of the data was set aside as the validation set. This left us with approxi-
mately 670 and 160 events for the training and validation set, respectively. Just as
before our input, x, consists of 4Dof data and its associated label, y, are the S-phase
arrival times.

5.5.3 Results from Transfer Learning

Looking at the learning curves (Figure 5.5) suggests that the transfer learning model
is learning with experience. The red curve corresponds to the loss from looking at the
training set, the blue curve is the loss from the validation set. The learning curve is
demonstrating that the convolutional neural network, which is using a convolutional
base originally trained on synthetic data, is improving (as a function of epoch)
making S-Phase predictions.

Note that we used several more (orders of magnitude) epochs to train the model.
The fact that we need more epochs makes sense considering that characteristics
of real time-series data is more complex than the idealistic synthetic waveforms
created using oversimplifications of the real Earth. In addition, aside from the
vertical rotation component, the synthetics do not possess characteristic background
noise(ambient, instrumental, etc.) that would be picked up from a true sensor. All
this combined makes the task of learning from real Wettzell data more difficult.

To minimize the chance of overfitting, we stopped the machine learning algo-
rithm from continuing to train once the loss curve reached a plateau. In this case,
we stopped training around the 2400th epoch. To automate termination we will
implement Early Stopping in the future. Early Stopping is a method that causes
the model to terminate training once it stops improving its performance (e.g. the
loss curve no longer decreases) on the validation set. Doing so will help us reach
the model’s peak performance by helping us automatically avoid underfitting and
overfitting (see Section 2.4.2).

Note that the overall behavior of training and validation loss curves are nearly
identical. This is a characteristic currently not well understood. It could be an
artifact of the cost function used (in this case mean squared error). When we
trained the model using a mean square logarithmic loss function (not shown here)
we noticed oscillatory behavior of the validation for the first 400 epochs before it
converged to the asymptotic declining behaviour of the training curve. This erratic
behaviour could be explained by the fact that the logarithmic mean squared error
is less sensitive to outliers. In other words, it doesn’t punish predictions with large
errors as severely as say, the mean squared error. With that said, using a logarithmic
loss function displays a more typical loss curve behavior in that there is a larger error
when making a prediction on the validation set than on the training data set. We
will revisit cost functions again once we have a larger and unique data set.

The preliminary findings of applying transfer learning on data collected from the
Wettzell Observatory hint there is potential in using Machine Learning to accurately
pick S-Phases. There are still several tests to perform for both the model trained
on synthetics and on the transfer learning model. We will go into these details in
the next section.
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5.6 Discussion & Further Work

The behaviour of the learning curves and the near 0 differential S-phase arrival times
between the true S-phase arrival time and those predicted by the machine learning
algorithm for both the training and transfer model are encouraging results.

To further push our neural network forward we will need to generate a larger
and more diverse data set. As mentioned in Section 5.4.1 we believe our synthetic
data set might have repeated events. Currently, events are defined using Numpy’s
Random function, which is not really random but rather, pseudo-random. Pseudo-
random generators work by starting off with a seed value which is then fed back to
the function the next time it is called[48]. To avoid repeated integers one can specify
different seed values. When we generated our data we did not do this. Meaning
there is a chance we had repeated synthetic waveforms. Thus, the diversity between
our training and validation set could have been minimal, thus explaining why the
machine learning algorithm had nearly identical training and validation loss curves.

In addition to the possibility of lacking diversity in our synthetic data set we
also ran into long computation times when generating our synthetic waveforms. The
inability to generate a large enough data set for training was the biggest setback we
encountered. Our current method of generating synthetic data is not efficient. It
can take as long as two days in order to make 1,000 synthetic events. Thus, as a
first step, we will optimize our code to generate synthetics with shorter computation
times. A machine learning algorithm is only as good as the data you feed it, and our
case we were limited to a data set which was hindered by a lack of real teleseismic
events.

Once the above criteria has been met we will be able to explore the limitations
of our neural network. To begin, we would like to include varying levels of noise
measured by the G-Ring and the collocated STS-2 to the synthetic waveforms. In
doing so we can explore how accurate the neural network is at picking S-Phases as
a function of the signal-to-noise ratio. We would hope to see the S-phase picker is
robust (at least to a certain degree) to varying levels of noise. Therefore demon-
strating its capability to make accurate predictions on station recordings with poor
SNR.

Along those same lines we would like to investigate how the neural network
performs on events with varying epicentral distance from the station. Given that
the separation of the P-Phase and the S-Phase are more discernible as a function of
distance, it may be that our neural network has an optimal minimum distance to
which it can accurately pick an S-Phase. In which case, it might be more beneficial
to have a probabilistic output describing the confidence level of the machine-learning
pick.

Varying where the window is centered could make our neural network more
robust for two reasons: first, shifting where the window is centered would artificially
expand our data set thus giving us more data to work with; second the task of
identifying S-Phases more difficult would be less trival. Currently the algorithm
is given waveforms where the computed S-Phase is directly in the middle of time
window. In doing so this could potentially bias how the neural network is learning
to pick S-Phases.

As a quality control check it would be instructive to convert the algorithm from
picking S-phases to picking P-phases. From the human point of view it is easier to
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identify changes in the phase and amplitude of the P-phase than the S-phase. Even if
we used a zoomed-in 60-second window it will still be easier to identify said changes
because we do not have remnants of the P-coda or reflected phases. This observation
was made when we used data from Wettzell (see Figure 5.6 and Figure 5.7. It could
be that the SNR of some of the events (including the ones shown here) was poor and
not optimal for phase-picking. The data set used for the transfer learning model
was a first iteration. We were more concerned about keeping as many waveforms
for training than we were about being selective of which waveforms were suited for
training.

Assuming we are able to train a robust neural network with the above mentioned
updates, there are is room for improvement worthy of exploration with regards to
the Wettzell data. Aside from having a larger data set to work with, it would be
beneficial to manually sift through the collected data and remove outliers. Given
that the size of the training data set is rather small in the context of Deep Learning,
the presence of signals with poor SNR and/or events that are inconsistent with plane
wave assumptions should be kept at a minimum so as to not influence the outcome
of training.

If we are unable to generate a larger and unique data set we could alternatively
train on teleseismic events recorded by one of the data centers part of the California
Integrated Seismic Network (CISN). We would have orders of magnitude more tele-
seismic data to work given the number of stations in California to choose from and
the recording duration (some stations span more than two decades). However, as of
writing this thesis, there does not exist a network of stations with inertial seismic
instrumentation and a collocated rotational sensor. Since we want to exploit the
insight rotational data can provide, we would have to compute theoretical rotation
rates for each event. The feasibility of this route is worth investigating given that the
trade-off would be a significantly larger data set to work with. Which in turn would
remove the issue of our inefficient code scheme and all the pre-processing required to
make the synthetic data behave characteristically like real data (e.g. downloading
and adding noise from the Wettzell Observatory and adding this to the synthetics).

5.7 Conclusion

The purpose of this Master Thesis project was to train a machine learning model
that can accurately pick S-Phases using 4Dof data. This was motivated from both
the theoretical and observational findings that including rotational observations (in
this case the vertical rotation rate) in conjunction with a collocated inertial sensor
(e.g. broadband seismometer) can improve back azimuth estimate and help separate
different S-phases using a single station. Improving either of the aforementioned
source properties can lead to more accurate and computationally less expensive,
single station source location approximations. However, there are several challenges
confronting 4Dof before we can exploit improved azimuth and S-Phase detection
from the extra observational component. Challenges include (but are not limited
to): noise, rotational measurements contaminating translational measurements that
can not be corrected given the current sensitivity of collocated instrumentation, and
features unique to rotational data that are not yet well understood.

To break this problem down, we focused on developing a neural network which
can accurately pick S-Phases using 4Dof data. Given the limited size of the data to
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train with from Wettzell Observatory, we shifted our focus to training on synthetic
data generated by a simple 1D velocity model. Several model architectures and
hyperparameters where tested before we settled on a configuration that looked most
promising. With this model we were able to achieve S-Phase picks with less than 0.5
second accuracy between the theoretical S-Phase arrival time and the pick made by
the neural network. Satisfied with our results we then used this pre-trained model on
teleseismic events recorded from the Wettzell Observatory via a technique known as
transfer learning. Early tests suggest there is a possibility that training on synthetic
data first, then applying transfer learning, might be sufficient to accurately pick
S-Phase arrival times on 4Dof data recorded at the Wettzell Observatory.
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Figure 5.3: Input waveforms and their associated S-phase picks made by the machine
learning algorithm (purple) and the true theoretical (blue) picks using 4Dof synthetic
waveforms. Translational components were generated using Instaseis. The vertical
rotation rate was derived using array-derived rotations. Noise from the Wettzell
sensor was added to the rotational vertical component. 60 second window inputs
are currently centered around the S-wave.
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Figure 5.4: Absolute arrival time differences between machine learning and com-
puted S-phase picks.

Figure 5.5: Learning curve using a mean squared error loss function using transfer
model on 4Dof waveforms from the Wettzell Observatory. Zoomed-in plot displayed
(upper right) to show the nearly identical behavior of both curves.
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Figure 5.6: Input waveforms and their associated S-phase picks made by the ma-
chine learning algorithm (purple) and the true theoretical (blue) picks using 4Dof
teleseismic events from the G-Ring and collocated STS-2 seismometer. 60 second
window inputs are currently centered around the S-wave.
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Figure 5.7: Input waveforms and their associated S-phase picks made by the ma-
chine learning algorithm (purple) and the true theoretical (blue) picks using 4Dof
teleseismic events from the G-Ring and collocated STS-2 seismometer. 60 second
window inputs are currently centered around the S-wave.
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[33] Thibaut Perol, Michaël Gharbi, and Marine Denolle. “Convolutional neural
network for earthquake detection and location”. In: Science Advances 4 (2018).

[34] K. B. Richards-Dinger and P. M. Shearer. “Earthquake locations in southern
California obtained using source-specific station terms”. In: JGR Solid Earth
105 (), pp. 10939–10960.

[35] Alan Richardson and Caelen Feller. “Seismic data denoising and deblending
using deep learning”. In: (2019).

[36] Zachary E. Ross, Men-Andrin Meier, and Egill Hauksson. “P-wave arrival
picking and first-motion polarity determination with deep learning”. In: JGR
Solid Earth 123 (2018), pp. 5120–5129.

[37] Zachary E. Ross et al. “Generalized Seismic Phase Detection with Deep Learn-
ing”. In: Bulletin of the Seismological Society of America 15 (2014), pp. 1929–
1958.

[38] Michael L. Seltzer, Dong Yu, and Yongqiang Wang. “An investigation of
deep neural networks for noise robust speech recognition”. In: IEEE (2013),
pp. 7398–7402.

[39] Peter M. Shearer. “Improving local earthquake locations using the L1 norm
and waveform cross correlation: Application to the Whittier Narrows, Califor-
nia, aftershock sequence”. In: JGR Solid Earth 102 (), pp. 8269–8283.

[40] David Sollberger et al. “Single-component elastic wavefield separation at the
free surface using source and receiver-side gradients”. In: SEG International
Exposition and 87th Annual Meeting (2016), pp. 2268–2273.

[41] Nitish Srivastava et al. “Dropout: A Simple Way to Prevent Neural Net-
works from Overfitting”. In: Journal of Machine Learning Research 15 (2014),
pp. 1929–1958.

[42] Seth Stein and Michael Wysession. An Introduction to Seismology, Earth-
quakes, and Earth Structure. Blackwell Publishing, 2003.

[43] Wiwit Suryanto Suryanto et al. “First Comparison of Array-Derived Rota-
tional Ground Motions with Direct Ring Laser Measurements”. In: Bulletin
of the Seismological Society of America (2006).

[44] UFLDL Tutorial: Convolutional Neural Network. http://ufldl.stanford.
edu/tutorial/supervised/ConvolutionalNeuralNetwork/. Accessed: 07.27.2019.

[45] Pascal Vincent et al. “Extracting and Composing Robust Features with De-
noising Autoencoders”. In: Proceedings of International Conference on Ma-
chine Learning (2008), pp. 1096–1103.

[46] Aaron G. Wech and Kenneth C. Creager. “Automated detection and location
of Cascadia tremor”. In: Geophysical Research Letters 35 (2008).

[47] Which Deep Learning Framework is Growing Fastest? https://towardsdatascience.

com/which-deep-learning-framework-is-growing-fastest-3f77f14aa318.
Accessed: 07.30.2019.



BIBLIOGRAPHY 63

[48] John Zelle. Python Programming: an Introduction to Computer Science. Franklin,
Beedle & Associates INC., 2009.

[49] Li-ping Zhang et al. “Seismic Signal Denoising and Decomposition Using Deep
Neural Networks”. In: International Journal of Petrochemical Science & En-
gineering (2017).

[50] Lingchen Zhu, Entao Liu, and James H. McClellan. “Seismic data denois-
ing through multiscale and sparsity-promoting dictionary learning”. In: Geo-
physics 80 (2015).

[51] Weiqiang Zhu and Gregory C. Beroza. “PhaseNet: A Deep-Neural-Network-
Based Seismic Arrival Time Picking Method”. In: Geophysics Journal Inter-
national 216 (2018), pp. 261–273.

[52] Weiqiang Zhu, S. Mostafa Mousavi, and Gregory C. Beroza. “Seismic Signal
Denoising and Decomposition Using Deep Neural Networks”. In: (2018).


